5,463 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Separations in Query Complexity Based on Pointer Functions

    Get PDF
    In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function ff on n=2kn=2^k bits defined by a complete binary tree of NAND gates of depth kk, which achieves R0(f)=O(D(f)0.7537)R_0(f) = O(D(f)^{0.7537\ldots}). We show this is false by giving an example of a total boolean function ff on nn bits whose deterministic query complexity is Ω(n/log(n))\Omega(n/\log(n)) while its zero-error randomized query complexity is O~(n)\tilde O(\sqrt{n}). We further show that the quantum query complexity of the same function is O~(n1/4)\tilde O(n^{1/4}), giving the first example of a total function with a super-quadratic gap between its quantum and deterministic query complexities. We also construct a total boolean function gg on nn variables that has zero-error randomized query complexity Ω(n/log(n))\Omega(n/\log(n)) and bounded-error randomized query complexity R(g)=O~(n)R(g) = \tilde O(\sqrt{n}). This is the first super-linear separation between these two complexity measures. The exact quantum query complexity of the same function is QE(g)=O~(n)Q_E(g) = \tilde O(\sqrt{n}). These two functions show that the relations D(f)=O(R1(f)2)D(f) = O(R_1(f)^2) and R0(f)=O~(R(f)2)R_0(f) = \tilde O(R(f)^2) are optimal, up to poly-logarithmic factors. Further variations of these functions give additional separations between other query complexity measures: a cubic separation between QQ and R0R_0, a 3/23/2-power separation between QEQ_E and RR, and a 4th power separation between approximate degree and bounded-error randomized query complexity. All of these examples are variants of a function recently introduced by \goos, Pitassi, and Watson which they used to separate the unambiguous 1-certificate complexity from deterministic query complexity and to resolve the famous Clique versus Independent Set problem in communication complexity.Comment: 25 pages, 6 figures. Version 3 improves separation between Q_E and R_0 and updates reference

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page
    corecore