33,239 research outputs found

    Server Structure Proposal and Automatic Verification Technology on IaaS Cloud of Plural Type Servers

    Get PDF
    In this paper, we propose a server structure proposal and automatic performance verification technology which proposes and verifies an appropriate server structure on Infrastructure as a Service (IaaS) cloud with baremetal servers, container based virtual servers and virtual machines. Recently, cloud services have been progressed and providers provide not only virtual machines but also baremetal servers and container based virtual servers. However, users need to design an appropriate server structure for their requirements based on 3 types quantitative performances and users need much technical knowledge to optimize their system performances. Therefore, we study a technology which satisfies users' performance requirements on these 3 types IaaS cloud. Firstly, we measure performances of a baremetal server, Docker containers, KVM (Kernel based Virtual Machine) virtual machines on OpenStack with virtual server number changing. Secondly, we propose a server structure proposal technology based on the measured quantitative data. A server structure proposal technology receives an abstract template of OpenStack Heat and function/performance requirements and then creates a concrete template with server specification information. Thirdly, we propose an automatic performance verification technology which executes necessary performance tests automatically on provisioned user environments according to the template.Comment: Evaluations of server structure proposal were insufficient in section

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Component-wise application migration in bidimensional cross-cloud environments

    Get PDF
    We propose an algorithm for the migration of cloud applications' components between different providers, possibly changing their service level between IaaS and PaaS. Our solution relies on three of the key ingredients of the trans-cloud approach: a unified API, agnostic topology descriptions, and mechanisms for the independent specification of providers. We show how our approach allows us to overcome some of the current interoperability and portability issues of cloud environments to propose a solution for migration, present an implementation of our proposed solution, and illustrate it with a case study and experimental results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore