10,637 research outputs found

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Capturing complexity in clinician case-mix: classification system development using GP and physician associate data.

    Get PDF
    Background: There are limited case-mix classification systems for primary care settings which are applicable when considering the optimal clinical skill mix to provide services. Aim: To develop a case-mix classification system (CMCS) and test its impact on analyses of patient outcomes by clinician type, using example data from physician associates' (PAs) and GPs' consultations with same-day appointment patients. Design & setting: Secondary analysis of controlled observational data from six general practices employing PAs and six matched practices not employing PAs in England. Method: Routinely-collected patient consultation records (PA n = 932, GP n = 1154) were used to design the CMCS (combining problem codes, disease register data, and free text); to describe the case-mix; and to assess impact of statistical adjustment for the CMCS on comparison of outcomes of consultations with PAs and with GPs. Results: A CMCS was developed by extending a system that only classified 18.6% (213/1147) of the presenting problems in this study's data. The CMCS differentiated the presenting patient's level of need or complexity as: acute, chronic, minor problem or symptom, prevention, or process of care, applied hierarchically. Combination of patient and consultation-level measures resulted in a higher classification of acuity and complexity for 639 (30.6%) of patient cases in this sample than if using consultation level alone. The CMCS was a key adjustment in modelling the study's main outcome measure, that is rate of repeat consultation. Conclusion: This CMCS assisted in classifying the differences in case-mix between professions, thereby allowing fairer assessment of the potential for role substitution and task shifting in primary care, but it requires further validation

    What do identifiers in HL7 identify? An essay in the ontology of identity

    Get PDF
    Health Level 7 (HL7) is an organization seeking to provide universal standards for the exchange of healthcare information. In a document entitled ‘HL7 Version 3 Standard: Data Types’, the HL7 organization advances descriptions of data types recom- mended for use as identifiers. We will argue that the descriptions supplied provide insufficient guidance as to what exactly the entities are which these data types uniquely identify. Are they real things, such as persons or pieces of equipment? Or are they representations of such real things in information artifacts? We here outline the problems faced by HL7 in providing answers to such questions, problems which arise because of the lack of anything like a coherent ontology in the HL7 standard, and we make some recommendations for future improvements

    Towards Interoperability in E-health Systems: a three-dimensional approach based on standards and semantics

    Get PDF
    Proceedings of: HEALTHINF 2009 (International Conference on Helath Informatics), Porto (Portugal), January 14-17, 2009, is part of BIOSTEC (Intemational Joint Conference on Biomedical Engineering Systems and Technologies)The interoperability problem in eHealth can only be addressed by mean of combining standards and technology. However, these alone do not suffice. An appropiate framework that articulates such combination is required. In this paper, we adopt a three-dimensional (information, conference and inference) approach for such framework, based on OWL as formal language for terminological and ontological health resources, SNOMED CT as lexical backbone for all such resources, and the standard CEN 13606 for representing EHRs. Based on tha framewok, we propose a novel form for creating and supporting networks of clinical terminologies. Additionally, we propose a number of software modules to semantically process and exploit EHRs, including NLP-based search and inference, wich can support medical applications in heterogeneous and distributed eHealth systems.This work has been funded as part of the Spanish nationally funded projects ISSE (FIT-350300-2007-75) and CISEP (FIT-350301-2007-18). We also acknowledge IST-2005-027595 EU project NeO
    corecore