159,931 research outputs found

    Parametric stiffness analysis of the Orthoglide

    Get PDF
    This paper presents a parametric stiffness analysis of the Orthoglide. A compliant modeling and a symbolic expression of the stiffness matrix are conducted. This allows a simple systematic analysis of the influence of the geometric design parameters and to quickly identify the critical link parameters. Our symbolic model is used to display the stiffest areas of the workspace for a specific machining task. Our approach can be applied to any parallel manipulator for which stiffness is a critical issue

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area

    Modeling economic systems as locally-constructive sequential games

    Get PDF
    Real-world economies are open-ended dynamic systems consisting of heterogeneous interacting participants. Human participants are decision-makers who strategically take into account the past actions and potential future actions of other participants. All participants are forced to be locally constructive, meaning their actions at any given time must be based on their local states; and participant actions at any given time affect future local states. Taken together, these essential properties imply real-world economies are locally-constructive sequential games. This paper discusses a modeling approach, Agent-based Computational Economics, that permits researchers to study economic systems from this point of view. ACE modeling principles and objectives are first concisely presented and explained. The remainder of the paper then highlights challenging issues and edgier explorations that ACE researchers are currently pursuing
    • …
    corecore