5,480 research outputs found

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    Fast Second-order Cone Programming for Safe Mission Planning

    Full text link
    This paper considers the problem of safe mission planning of dynamic systems operating under uncertain environments. Much of the prior work on achieving robust and safe control requires solving second-order cone programs (SOCP). Unfortunately, existing general purpose SOCP methods are often infeasible for real-time robotic tasks due to high memory and computational requirements imposed by existing general optimization methods. The key contribution of this paper is a fast and memory-efficient algorithm for SOCP that would enable robust and safe mission planning on-board robots in real-time. Our algorithm does not have any external dependency, can efficiently utilize warm start provided in safe planning settings, and in fact leads to significant speed up over standard optimization packages (like SDPT3) for even standard SOCP problems. For example, for a standard quadrotor problem, our method leads to speedup of 1000x over SDPT3 without any deterioration in the solution quality. Our method is based on two insights: a) SOCPs can be interpreted as optimizing a function over a polytope with infinite sides, b) a linear function can be efficiently optimized over this polytope. We combine the above observations with a novel utilization of Wolfe's algorithm to obtain an efficient optimization method that can be easily implemented on small embedded devices. In addition to the above mentioned algorithm, we also design a two-level sensing method based on Gaussian Process for complex obstacles with non-linear boundaries such as a cylinder

    Optimal control of Allen-Cahn systems

    Get PDF
    Optimization problems governed by Allen-Cahn systems including elastic effects are formulated and first-order necessary optimality conditions are presented. Smooth as well as obstacle potentials are considered, where the latter leads to an MPEC. Numerically, for smooth potential the problem is solved efficiently by the Trust-Region-Newton-Steihaug-cg method. In case of an obstacle potential first numerical results are presented

    Towards parallelizable sampling-based Nonlinear Model Predictive Control

    Full text link
    This paper proposes a new sampling-based nonlinear model predictive control (MPC) algorithm, with a bound on complexity quadratic in the prediction horizon N and linear in the number of samples. The idea of the proposed algorithm is to use the sequence of predicted inputs from the previous time step as a warm start, and to iteratively update this sequence by changing its elements one by one, starting from the last predicted input and ending with the first predicted input. This strategy, which resembles the dynamic programming principle, allows for parallelization up to a certain level and yields a suboptimal nonlinear MPC algorithm with guaranteed recursive feasibility, stability and improved cost function at every iteration, which is suitable for real-time implementation. The complexity of the algorithm per each time step in the prediction horizon depends only on the horizon, the number of samples and parallel threads, and it is independent of the measured system state. Comparisons with the fmincon nonlinear optimization solver on benchmark examples indicate that as the simulation time progresses, the proposed algorithm converges rapidly to the "optimal" solution, even when using a small number of samples.Comment: 9 pages, 9 pictures, submitted to IFAC World Congress 201

    On multigrid for anisotropic equations and variational inequalities: pricing multi-dimensional European and American options

    Get PDF
    Partial differential operators in finance often originate in bounded linear stochastic processes. As a consequence, diffusion over these boundaries is zero and the corresponding coefficients vanish. The choice of parameters and stretched grids lead to additional anisotropies in the discrete equations or inequalities. In this study various block smoothers are tested in numerical experiments for equations of Black–Scholes-type (European options) in several dimensions. For linear complementarity problems, as they arise from optimal stopping time problems (American options), the choice of grid transfer is also crucial to preserve complementarity conditions on all grid levels. We adapt the transfer operators at the free boundary in a suitable way and compare with other strategies including cascadic approaches and full approximation schemes

    On multigrid for anisotropic equations and variational inequalities: pricing multi-dimensional European and American options

    Get PDF
    Partial differential operators in finance often originate in bounded linear stochastic processes. As a consequence, diffusion over these boundaries is zero and the corresponding coefficients vanish. The choice of parameters and stretched grids lead to additional anisotropies in the discrete equations or inequalities. In this study various block smoothers are tested in numerical experiments for equations of Black–Scholes-type (European options) in several dimensions. For linear complementarity problems, as they arise from optimal stopping time problems (American options), the choice of grid transfer is also crucial to preserve complementarity conditions on all grid levels. We adapt the transfer operators at the free boundary in a suitable way and compare with other strategies including cascadic approaches and full approximation schemes
    • …
    corecore