221 research outputs found

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Hyper Association Graph Matching with Uncertainty Quantification for Coronary Artery Semantic Labeling

    Full text link
    Coronary artery disease (CAD) is one of the primary causes leading to death worldwide. Accurate extraction of individual arterial branches on invasive coronary angiograms (ICA) is important for stenosis detection and CAD diagnosis. However, deep learning-based models face challenges in generating semantic segmentation for coronary arteries due to the morphological similarity among different types of coronary arteries. To address this challenge, we propose an innovative approach using the hyper association graph-matching neural network with uncertainty quantification (HAGMN-UQ) for coronary artery semantic labeling on ICAs. The graph-matching procedure maps the arterial branches between two individual graphs, so that the unlabeled arterial segments are classified by the labeled segments, and the coronary artery semantic labeling is achieved. By incorporating the anatomical structural loss and uncertainty, our model achieved an accuracy of 0.9345 for coronary artery semantic labeling with a fast inference speed, leading to an effective and efficient prediction in real-time clinical decision-making scenarios.Comment: 8 pages, 2 figure

    Quantum and Classical Multilevel Algorithms for (Hyper)Graphs

    Get PDF
    Combinatorial optimization problems on (hyper)graphs are ubiquitous in science and industry. Because many of these problems are NP-hard, development of sophisticated heuristics is of utmost importance for practical problems. In recent years, the emergence of Noisy Intermediate-Scale Quantum (NISQ) computers has opened up the opportunity to dramaticaly speedup combinatorial optimization. However, the adoption of NISQ devices is impeded by their severe limitations, both in terms of the number of qubits, as well as in their quality. NISQ devices are widely expected to have no more than hundreds to thousands of qubits with very limited error-correction, imposing a strict limit on the size and the structure of the problems that can be tackled directly. A natural solution to this issue is hybrid quantum-classical algorithms that combine a NISQ device with a classical machine with the goal of capturing “the best of both worlds”. Being motivated by lack of high quality optimization solvers for hypergraph partitioning, in this thesis, we begin by discussing classical multilevel approaches for this problem. We present a novel relaxation-based vertex similarity measure termed algebraic distance for hypergraphs and the coarsening schemes based on it. Extending the multilevel method to include quantum optimization routines, we present Quantum Local Search (QLS) – a hybrid iterative improvement approach that is inspired by the classical local search approaches. Next, we introduce the Multilevel Quantum Local Search (ML-QLS) that incorporates the quantum-enhanced iterative improvement scheme introduced in QLS within the multilevel framework, as well as several techniques to further understand and improve the effectiveness of Quantum Approximate Optimization Algorithm used throughout our work

    Computational Optimization Techniques for Graph Partitioning

    Get PDF
    Partitioning graphs into two or more subgraphs is a fundamental operation in computer science, with applications in large-scale graph analytics, distributed and parallel data processing, and fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must balance the need to produce high quality partitions with that of providing practical performance. Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments in continuous optimization formulations have led to the development of hybrid methods that combine the best of both approaches. This work describes numerical optimization formulations for two classes of graph partitioning problems, edge cuts and vertex separators. Optimization-based formulations for each of these problems are described, and hybrid algorithms combining these optimization-based approaches with traditional combinatoric methods are presented. Efficient implementations and computational results for these algorithms are presented in a C++ graph partitioning library competitive with the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is proposed
    corecore