170 research outputs found

    Simulated Annealing for JPEG Quantization

    Full text link
    JPEG is one of the most widely used image formats, but in some ways remains surprisingly unoptimized, perhaps because some natural optimizations would go outside the standard that defines JPEG. We show how to improve JPEG compression in a standard-compliant, backward-compatible manner, by finding improved default quantization tables. We describe a simulated annealing technique that has allowed us to find several quantization tables that perform better than the industry standard, in terms of both compressed size and image fidelity. Specifically, we derive tables that reduce the FSIM error by over 10% while improving compression by over 20% at quality level 95 in our tests; we also provide similar results for other quality levels. While we acknowledge our approach can in some images lead to visible artifacts under large magnification, we believe use of these quantization tables, or additional tables that could be found using our methodology, would significantly reduce JPEG file sizes with improved overall image quality.Comment: Appendix not included in arXiv version due to size restrictions. For full paper go to: http://www.eecs.harvard.edu/~michaelm/SimAnneal/PAPER/simulated-annealing-jpeg.pd

    Toward Generalized Psychovisual Preprocessing For Video Encoding

    Get PDF
    Deep perceptual preprocessing has recently emerged as a new way to enable further bitrate savings across several generations of video encoders without breaking standards or requiring any changes in client devices. In this article, we lay the foundation for a generalized psychovisual preprocessing framework for video encoding and describe one of its promising instantiations that is practically deployable for video-on-demand, live, gaming, and user-generated content (UGC). Results using state-of-the-art advanced video coding (AVC), high efficiency video coding (HEVC), and versatile video coding (VVC) encoders show that average bitrate [Bjontegaard delta-rate (BD-rate)] gains of 11%-17% are obtained over three state-of-the-art reference-based quality metrics [Netflix video multi-method assessment fusion (VMAF), structural similarity index (SSIM), and Apple advanced video quality tool (AVQT)], as well as the recently proposed nonreference International Telecommunication Union-Telecommunication?(ITU-T) P.1204 metric. The proposed framework on CPU is shown to be twice faster than Ă— 264 medium-preset encoding. On GPU hardware, our approach achieves 714 frames/sec for 1080p video (below 2 ms/frame), thereby enabling its use in very-low-latency live video or game streaming applications

    Multidimensional image selection and classification system based on visual feature extraction and scaling

    Get PDF
    Sorting and searching operations used for the selection of test images strongly affect the results of image quality investigations and require a high level of versatility. This paper describes the way that inherent image properties, which are known to have a visual impact on the observer, can be used to provide support and an innovative answer to image selection and classification. The selected image properties are intended to be comprehensive and to correlate with our perception. Results from this work aim to lead to the definition of a set of universal scales of perceived image properties that are relevant to image quality assessments. The initial prototype built towards these objectives relies on global analysis of low-level image features. A multidimensional system is built, based upon the global image features of: lightness, contrast, colorfulness, color contrast, dominant hue(s) and busyness. The resulting feature metric values are compared against outcomes from relevant psychophysical investigations to evaluate the success of the employed algorithms in deriving image features that affect the perceived impression of the images

    A Detail Based Method for Linear Full Reference Image Quality Prediction

    Full text link
    In this paper, a novel Full Reference method is proposed for image quality assessment, using the combination of two separate metrics to measure the perceptually distinct impact of detail losses and of spurious details. To this purpose, the gradient of the impaired image is locally decomposed as a predicted version of the original gradient, plus a gradient residual. It is assumed that the detail attenuation identifies the detail loss, whereas the gradient residuals describe the spurious details. It turns out that the perceptual impact of detail losses is roughly linear with the loss of the positional Fisher information, while the perceptual impact of the spurious details is roughly proportional to a logarithmic measure of the signal to residual ratio. The affine combination of these two metrics forms a new index strongly correlated with the empirical Differential Mean Opinion Score (DMOS) for a significant class of image impairments, as verified for three independent popular databases. The method allowed alignment and merging of DMOS data coming from these different databases to a common DMOS scale by affine transformations. Unexpectedly, the DMOS scale setting is possible by the analysis of a single image affected by additive noise.Comment: 15 pages, 9 figures. Copyright notice: The paper has been accepted for publication on the IEEE Trans. on Image Processing on 19/09/2017 and the copyright has been transferred to the IEE

    Quality Index for Stereoscopic Images by Separately Evaluating Adding and Subtracting

    Get PDF
    The human visual system (HVS) plays an important role in stereo image quality perception. Therefore, it has aroused many people’s interest in how to take advantage of the knowledge of the visual perception in image quality assessment models. This paper proposes a full-reference metric for quality assessment of stereoscopic images based on the binocular difference channel and binocular summation channel. For a stereo pair, the binocular summation map and binocular difference map are computed first by adding and subtracting the left image and right image. Then the binocular summation is decoupled into two parts, namely additive impairments and detail losses. The quality of binocular summation is obtained as the adaptive combination of the quality of detail losses and additive impairments. The quality of binocular summation is computed by using the Contrast Sensitivity Function (CSF) and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binocular difference is integrated into an overall quality index. The experimental results indicate that compared with existing metrics, the proposed metric is highly consistent with the subjective quality assessment and is a robust measure. The result have also indirectly proved hypothesis of the existence of binocular summation and binocular difference channels

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al

    Advances in Quality Assessment Of Video Streaming Systems: Algorithms, Methods, Tools

    Get PDF
    Quality assessment of video has matured significantly in the last 10 years due to a flurry of relevant developments in academia and industry, with relevant initiatives in VQEG, AOMedia, MPEG, ITU-T P.910, and other standardization and advisory bodies . Most advanced video streaming systems are now clearly moving away from good old-fashioned' PSNR and structural similarity type of assessment towards metrics that align better to mean opinion scores from viewers. Several of these algorithms, methods and tools have only been developed in the last 3-5 years and, while they are of significant interest to the research community, their advantages and limitations are not widely known in the research community. This tutorial provides this overview, but also focuses on practical aspects and how to design quality assessment tests that can scale to large datasets

    Brain organoid data synthesis and evaluation

    Get PDF
    IntroductionDatasets containing only few images are common in the biomedical field. This poses a global challenge for the development of robust deep-learning analysis tools, which require a large number of images. Generative Adversarial Networks (GANs) are an increasingly used solution to expand small datasets, specifically in the biomedical domain. However, the validation of synthetic images by metrics is still controversial and psychovisual evaluations are time consuming.MethodsWe augment a small brain organoid bright-field database of 40 images using several GAN optimizations. We compare these synthetic images to the original dataset using similitude metrcis and we perform an psychovisual evaluation of the 240 images generated. Eight biological experts labeled the full dataset (280 images) as syntetic or natural using a custom-built software. We calculate the error rate per loss optimization as well as the hesitation time. We then compare these results to those provided by the similarity metrics. We test the psychovalidated images in a training step of a segmentation task.Results and discussionGenerated images are considered as natural as the original dataset, with no increase of the hesitation time by experts. Experts are particularly misled by perceptual and Wasserstein loss optimization. These optimizations render the most qualitative and similar images according to metrics to the original dataset. We do not observe a strong correlation but links between some metrics and psychovisual decision according to the kind of generation. Particular Blur metric combinations could maybe replace the psychovisual evaluation. Segmentation task which use the most psychovalidated images are the most accurate

    Visual quality assessment for super-resolved images: database and method

    Get PDF
    Image super-resolution (SR) has been an active re-search problem which has recently received renewed interest due to the introduction of new technologies such as deep learning. However, the lack of suitable criteria to evaluate the SR perfor-mance has hindered technology development. In this paper, we fill a gap in the literature by providing the first publicly available database as well as a new image quality assessment (IQA) method specifically designed for assessing the visual quality of su-per-resolved images (SRIs). In constructing the Quality Assess-ment Database for SRIs (QADS), we carefully selected 20 refer-ence images and created 980 SRIs using 21 image SR methods. Mean opinion score (MOS) for these SRIs are collected through 100 individuals participating a suitably designed psychovisual experiment. Extensive numerical and statistical analysis is per-formed to show that the MOS of QADS has excellent suitability and reliability. The psychovisual experiment has led to the dis-covery that, unlike distortions encountered in other IQA data-bases, artifacts of the SRIs degenerate the image structure as well as image texture. Moreover, the structural and textural degener-ations have distinctive perceptual properties. Based on these in-sights, we propose a novel method to assess the visual quality of SRIs by separately considering the structural and textural com-ponents of images. Observing that textural degenerations are mainly attributed to dissimilar texture or checkerboard artifacts, we propose to measure the changes of textural distributions. We also observe that structural degenerations appear as blurring and jaggies artifacts in SRIs and develop separate similarity measures for different types of structural degenerations. A new pooling mechanism is then used to fuse the different similarities together to give the final quality score for an SRI. Experiments conducted on the QADS demonstrate that our method significantly outper-forms classical as well as current state-of-the-art IQA methods
    • …
    corecore