1,929 research outputs found

    IMPROVED LICENSE PLATE LOCALIZATION ALGORITHM BASED ON MORPHOLOGICAL OPERATIONS

    Get PDF
    Automatic License Plate Recognition (ALPR) systems have become an important tool to track stolen cars, access control, and monitor traffic. ALPR system consists of locating the license plate in an image, followed by character detection and recognition. Since the license plate can exist anywhere within an image, localization is the most important part of ALPR and requires greater processing time. Most ALPR systems are computationally intensive and require a high-performance computer. The proposed algorithm differs significantly from those utilized in previous ALPR technologies by offering a fast algorithm, composed of structural elements which more precisely conducts morphological operations within an image, and can be implemented in portable devices with low computation capabilities. The proposed algorithm is able to accurately detect and differentiate license plates in complex images. This method was first tested through MATLAB with an on-line public database of Greek license plates which is a popular benchmark used in previous works. The proposed algorithm was 100% accurate in all clear images, and achieved 98.45% accuracy when using the entire database which included complex backgrounds and license plates obscured by shadow and dirt. Second, the efficiency of the algorithm was tested in devices with low computational processing power, by translating the code to Python, and was 300% faster than previous work

    A mathematical morphological method to thin edge detection in dark region

    Get PDF
    [[abstract]]The performance of image segmentation depends on the output quality of the edge detection process. Typical edge detecting method is based on detecting pixels in an image with high gradient values, and then applies a global threshold value to extract the edge points of the image. By these methods, some detected edge points may not belong to the edge and some thin edge points in dark regions of the image are being eliminated. These eliminated edges may be with important features of the image. This paper proposes a new mathematical morphological edge-detecting algorithm based on the morphological residue transformation derived from dilation operation to detect and preserve the thin edges. Moreover, this work adopts five bipolar oriented edge masks to prune the miss detected edge points. The experimental results show that the proposed algorithm is successfully to preserve the thin edges in the dark regions.[[conferencetype]]國際[[conferencedate]]20041218~20041221[[booktype]]紙本[[conferencelocation]]Rome, Ital

    Medical Images Edge Detection Based on Mathematical Morphology

    Get PDF
    Medical images edge detection is an important work for object recognition of the human organs and it is an important pre-processing step in medical image segmentation and reconstruction. Conventionally, edge is detected according to gradient-based algorithm and template-based algorithm, but they are not so good for noise medical image edge detection. In this paper, basic mathematical morphological theory and operations are introduced, and then a novel mathematical morphological edge detection algorithm is proposed to detect the edge of medical images with salt-and-pepper noise. The simulation results shows that the novel mathematical morphological edge detection algorithm is more efficient for image denoising and edge detection than the usually used template-based edge detection algorithms and general morphological edge detection algorithms. It has been observed that the proposed morphological edge detection algorithm performs better than sobel, prewitt, roberts and canny’s edge detection algorithm. In this paper the comparative analysis of various image edge detection techniques is presented using MATLAB 8.

    Mathematical Morphology for Quantification in Biological & Medical Image Analysis

    Get PDF
    Mathematical morphology is an established field of image processing first introduced as an application of set and lattice theories. Originally used to characterise particle distributions, mathematical morphology has gone on to be a core tool required for such important analysis methods as skeletonisation and the watershed transform. In this thesis, I introduce a selection of new image analysis techniques based on mathematical morphology. Utilising assumptions of shape, I propose a new approach for the enhancement of vessel-like objects in images: the bowler-hat transform. Built upon morphological operations, this approach is successful at challenges such as junctions and robust against noise. The bowler-hat transform is shown to give better results than competitor methods on challenging data such as retinal/fundus imagery. Building further on morphological operations, I introduce two novel methods for particle and blob detection. The first of which is developed in the context of colocalisation, a standard biological assay, and the second, which is based on Hilbert-Edge Detection And Ranging (HEDAR), with regard to nuclei detection and counting in fluorescent microscopy. These methods are shown to produce accurate and informative results for sub-pixel and supra-pixel object counting in complex and noisy biological scenarios. I propose a new approach for the automated extraction and measurement of object thickness for intricate and complicated vessels, such as brain vascular in medical images. This pipeline depends on two key technologies: semi-automated segmentation by advanced level-set methods and automatic thickness calculation based on morphological operations. This approach is validated and results demonstrating the broad range of challenges posed by these images and the possible limitations of this pipeline are shown. This thesis represents a significant contribution to the field of image processing using mathematical morphology and the methods within are transferable to a range of complex challenges present across biomedical image analysis

    Generalised morphological image diffusion

    No full text
    International audienceRelationships between linear and morphological scale-spaces have been considered by various previous works. The aim of this paper is to study how to generalise the diffusion-based approaches in order to introduce nonlinear filters whose effects mimic the asymmetric behaviour of morphological dilation and erosion, as well as other evolved morphological filters. A methodology based on the counter-harmonic mean is adopted here. Details of numerical implementation are discussed and results are provided to illustrate the various studied cases: isotropic, nonlinear and coherence-enhancing diffusion. We also found a new way to derive the classical link between Gaussian scale-space and dilation/erosion scale-spaces based on quadratic structuring functions. We have included some preliminary applications of the generalised morphological diffusion to solve image processing problems such as denoising and image enhancement in the case of asymmetric bright/dark image properties

    The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution

    Get PDF
    We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters, filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the structures.}Comment: Replacement with higher resolution figures. 28 pages, 17 figures. For Full Resolution Version see: http://www.astro.rug.nl/~weygaert/tim1publication/miguelmmf.pd

    An investigation of a pattern recognition system to analyse and classify dried fruit

    Get PDF
    Includes bibliographical references.Both the declining cost and increasing capabilities of specialised computer hardware for image processing have enabled computer vision systems to become a viable alternative to human visual inspection in industrial applications. In this thesis a vision system that will analyse and classify dried fruit is investigated. In human visual inspection of dried fruit, the colour of the fruit is often the main determinant of its grade; in specific cases the presence of blemishes and geometrical fault are also incorporated in order to determine the fruit grade. A colour model that would successfully represent the colour variations within dried fruit grades, was investigated. The selected colour feature space formed the basis of a classification system which automatically allocated a sample unit of dried fruit to one specific grade. Various classification methods were investigated, and that which suited the system data and parameters was selected and evaluated using test sets of three types of dried fruit. In order to successfully grade dried fruit, a number of additional problems had to be catered for: the red/brown coloured central core area of dried peaches had to be removed from the colour analysis, and Black blemishes upon dried pears had to be isolated and sized in order to supplement the colour classifier in the final classification of the pear. The core area of a dried peach was isolated using the Morphological Top-Hat transform, and Black blemishes upon pears were isolated using colour histogram thresholding techniques. The test results indicated that although colour classification was the major determinant in the grading of dried fruit, other characteristics of the fruit had to be incorporated to achieve successful final classification results; these characteristics may be different for different types of dried fruit, but in the case of dried apricots, dried peaches and dried pears, they include the: peach core area removal, fruit geometry validation, and dried pear blemish isolation and sizing
    • …
    corecore