1,080 research outputs found

    Global convergence of splitting methods for nonconvex composite optimization

    Full text link
    We consider the problem of minimizing the sum of a smooth function hh with a bounded Hessian, and a nonsmooth function. We assume that the latter function is a composition of a proper closed function PP and a surjective linear map M\cal M, with the proximal mappings of τP\tau P, τ>0\tau > 0, simple to compute. This problem is nonconvex in general and encompasses many important applications in engineering and machine learning. In this paper, we examined two types of splitting methods for solving this nonconvex optimization problem: alternating direction method of multipliers and proximal gradient algorithm. For the direct adaptation of the alternating direction method of multipliers, we show that, if the penalty parameter is chosen sufficiently large and the sequence generated has a cluster point, then it gives a stationary point of the nonconvex problem. We also establish convergence of the whole sequence under an additional assumption that the functions hh and PP are semi-algebraic. Furthermore, we give simple sufficient conditions to guarantee boundedness of the sequence generated. These conditions can be satisfied for a wide range of applications including the least squares problem with the 1/2\ell_{1/2} regularization. Finally, when M\cal M is the identity so that the proximal gradient algorithm can be efficiently applied, we show that any cluster point is stationary under a slightly more flexible constant step-size rule than what is known in the literature for a nonconvex hh.Comment: To appear in SIOP

    Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers

    Get PDF
    Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconstruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.Comment: 23 page
    corecore