127 research outputs found

    Context-aware Data Quality Assessment for Big Data

    Get PDF
    Big data changed the way in which we collect and analyze data. In particular, the amount of available information is constantly growing and organizations rely more and more on data analysis in order to achieve their competitive ad- vantage. However, such amount of data can create a real value only if combined with quality: good decisions and actions are the results of correct, reliable and complete data. In such a scenario, methods and techniques for the data quality assessment can support the identification of suitable data to process. If in tra- ditional database numerous assessment methods are proposed, in the big data scenario new algorithms have to be designed in order to deal with novel require- ments related to variety, volume and velocity issues. In particular, in this paper we highlight that dealing with heterogeneous sources requires an adaptive ap- proach able to trigger the suitable quality assessment methods on the basis of the data type and context in which data have to be used. Furthermore, we show that in some situations it is not possible to evaluate the quality of the entire dataset due to performance and time constraints. For this reason, we suggest to focus the data quality assessment only on a portion of the dataset and to take into account the consequent loss of accuracy by introducing a confidence factor as a measure of the reliability of the quality assessment procedure. We propose a methodology to build a data quality adapter module which selects the best configuration for the data quality assessment based on the user main require- ments: time minimization, confidence maximization, and budget minimization. Experiments are performed by considering real data gathered from a smart city case study

    In Homage of Change

    Get PDF

    Adding value to Linked Open Data using a multidimensional model approach based on the RDF Data Cube vocabulary

    Get PDF
    Most organisations using Open Data currently focus on data processing and analysis. However, although Open Data may be available online, these data are generally of poor quality, thus discouraging others from contributing to and reusing them. This paper describes an approach to publish statistical data from public repositories by using Semantic Web standards published by the W3C, such as RDF and SPARQL, in order to facilitate the analysis of multidimensional models. We have defined a framework based on the entire lifecycle of data publication including a novel step of Linked Open Data assessment and the use of external repositories as knowledge base for data enrichment. As a result, users are able to interact with the data generated according to the RDF Data Cube vocabulary, which makes it possible for general users to avoid the complexity of SPARQL when analysing data. The use case was applied to the Barcelona Open Data platform and revealed the benefits of the application of our approach, such as helping in the decision-making process.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities through the Project ECLIPSE-UA under grant RTI2018-094283-B-C32

    Simulation of the performance of complex data-intensive workflows

    Get PDF
    PhD ThesisRecently, cloud computing has been used for analytical and data-intensive processes as it offers many attractive features, including resource pooling, on-demand capability and rapid elasticity. Scientific workflows use these features to tackle the problems of complex data-intensive applications. Data-intensive workflows are composed of many tasks that may involve large input data sets and produce large amounts of data as output, which typically runs in highly dynamic environments. However, the resources should be allocated dynamically depending on the demand changes of the work flow, as over-provisioning increases the cost and under-provisioning causes Service Level Agreement (SLA) violation and poor Quality of Service (QoS). Performance prediction of complex workflows is a necessary step prior to the deployment of the workflow. Performance analysis of complex data-intensive workflows is a challenging task due to the complexity of their structure, diversity of big data, and data dependencies, in addition to the required examination to the performance and challenges associated with running their workflows in the real cloud. In this thesis, a solution is explored to address these challenges, using a Next Generation Sequencing (NGS) workflow pipeline as a case study, which may require hundreds/ thousands of CPU hours to process a terabyte of data. We propose a methodology to model, simulate and predict runtime and the number of resources used by the complex data-intensive workflows. One contribution of our simulation methodology is that it provides an ability to extract the simulation parameters (e.g., MIPs and BW values) that are required for constructing a training set and a fairly accurate prediction of the run time for input for cluster sizes much larger than ones used in training of the prediction model. The proposed methodology permits the derivation of run time prediction based on historical data from the provenance fi les. We present the run time prediction of the complex workflow by considering different cases of its running in the cloud such as execution failure and library deployment time. In case of failure, the framework can apply the prediction only partially considering the successful parts of the pipeline, in the other case the framework can predict with or without considering the time to deploy libraries. To further improve the accuracy of prediction, we propose a simulation model that handles I/O contention

    Blockchain-based Digital Twins:Research Trends, Issues, and Future Challenges

    Get PDF
    Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, digital twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We also highlight the role of artificial intelligence in blockchain-based DTs. Furthermore, we discuss the current and future research and deployment challenges of blockchain-supported DTs that require further investigation.</p

    Linked Vocabulary Recommendation Tools for Internet of Things: A Survey

    Get PDF
    The Semantic Web emerged with the vision of eased integration of heterogeneous, distributed data on the Web. The approach fundamentally relies on the linkage between and reuse of previously published vocabularies to facilitate semantic interoperability. In recent years, the Semantic Web has been perceived as a potential enabling technology to overcome interoperability issues in the Internet of Things (IoT), especially for service discovery and composition. Despite the importance of making vocabulary terms discoverable and selecting most suitable ones in forthcoming IoT applications, no state-of-the-art survey of tools achieving such recommendation tasks exists to date. This survey covers this gap, by specifying an extensive evaluation framework and assessing linked vocabulary recommendation tools. Furthermore, we discuss challenges and opportunities of vocabulary recommendation and related tools in the context of emerging IoT ecosystems. Overall, 40 recommendation tools for linked vocabularies were evaluated, both, empirically and experimentally. Some of the key ndings include that (i) many tools neglect to thoroughly address both, the curation of a vocabulary collection and e ective selection mechanisms; (ii) modern information retrieval techniques are underrepresented; and (iii) the reviewed tools that emerged from Semantic Web use cases are not yet su ciently extended to t today’s IoT projects

    Contribution à la convergence d'infrastructure entre le calcul haute performance et le traitement de données à large échelle

    Get PDF
    The amount of produced data, either in the scientific community or the commercialworld, is constantly growing. The field of Big Data has emerged to handle largeamounts of data on distributed computing infrastructures. High-Performance Computing (HPC) infrastructures are traditionally used for the execution of computeintensive workloads. However, the HPC community is also facing an increasingneed to process large amounts of data derived from high definition sensors andlarge physics apparati. The convergence of the two fields -HPC and Big Data- iscurrently taking place. In fact, the HPC community already uses Big Data tools,which are not always integrated correctly, especially at the level of the file systemand the Resource and Job Management System (RJMS).In order to understand how we can leverage HPC clusters for Big Data usage, andwhat are the challenges for the HPC infrastructures, we have studied multipleaspects of the convergence: We initially provide a survey on the software provisioning methods, with a focus on data-intensive applications. We contribute a newRJMS collaboration technique called BeBiDa which is based on 50 lines of codewhereas similar solutions use at least 1000 times more. We evaluate this mechanism on real conditions and in simulated environment with our simulator Batsim.Furthermore, we provide extensions to Batsim to support I/O, and showcase thedevelopments of a generic file system model along with a Big Data applicationmodel. This allows us to complement BeBiDa real conditions experiments withsimulations while enabling us to study file system dimensioning and trade-offs.All the experiments and analysis of this work have been done with reproducibilityin mind. Based on this experience, we propose to integrate the developmentworkflow and data analysis in the reproducibility mindset, and give feedback onour experiences with a list of best practices.RĂ©sumĂ©La quantitĂ© de donnĂ©es produites, que ce soit dans la communautĂ© scientifiqueou commerciale, est en croissance constante. Le domaine du Big Data a Ă©mergĂ©face au traitement de grandes quantitĂ©s de donnĂ©es sur les infrastructures informatiques distribuĂ©es. Les infrastructures de calcul haute performance (HPC) sont traditionnellement utilisĂ©es pour l’exĂ©cution de charges de travail intensives en calcul. Cependant, la communautĂ© HPC fait Ă©galement face Ă  un nombre croissant debesoin de traitement de grandes quantitĂ©s de donnĂ©es dĂ©rivĂ©es de capteurs hautedĂ©finition et de grands appareils physique. La convergence des deux domaines-HPC et Big Data- est en cours. En fait, la communautĂ© HPC utilise dĂ©jĂ  des outilsBig Data, qui ne sont pas toujours correctement intĂ©grĂ©s, en particulier au niveaudu systĂšme de fichiers ainsi que du systĂšme de gestion des ressources (RJMS).Afin de comprendre comment nous pouvons tirer parti des clusters HPC pourl’utilisation du Big Data, et quels sont les dĂ©fis pour les infrastructures HPC, nousavons Ă©tudiĂ© plusieurs aspects de la convergence: nous avons d’abord proposĂ© uneĂ©tude sur les mĂ©thodes de provisionnement logiciel, en mettant l’accent sur lesapplications utilisant beaucoup de donnĂ©es. Nous contribuons a l’état de l’art avecune nouvelle technique de collaboration entre RJMS appelĂ©e BeBiDa basĂ©e sur 50lignes de code alors que des solutions similaires en utilisent au moins 1000 fois plus.Nous Ă©valuons ce mĂ©canisme en conditions rĂ©elles et en environnement simulĂ©avec notre simulateur Batsim. En outre, nous fournissons des extensions Ă  Batsimpour prendre en charge les entrĂ©es/sorties et prĂ©sentons le dĂ©veloppements d’unmodĂšle de systĂšme de fichiers gĂ©nĂ©rique accompagnĂ© d’un modĂšle d’applicationBig Data. Cela nous permet de complĂ©ter les expĂ©riences en conditions rĂ©ellesde BeBiDa en simulation tout en Ă©tudiant le dimensionnement et les diffĂ©rentscompromis autours des systĂšmes de fichiers.Toutes les expĂ©riences et analyses de ce travail ont Ă©tĂ© effectuĂ©es avec la reproductibilitĂ© Ă  l’esprit. Sur la base de cette expĂ©rience, nous proposons d’intĂ©grerle flux de travail du dĂ©veloppement et de l’analyse des donnĂ©es dans l’esprit dela reproductibilitĂ©, et de donner un retour sur nos expĂ©riences avec une liste debonnes pratiques
    • 

    corecore