571 research outputs found

    Mutual query data sharing protocol for public key encryption through chosen-ciphertext attack in cloud environment

    Get PDF
    In this paper, we are proposing a mutual query data sharing protocol (MQDS) to overcome the encryption or decryption time limitations of exiting protocols like Boneh, rivest shamir adleman (RSA), Multi-bit transposed ring learning parity with noise (TRLPN), ring learning parity with noise (Ring-LPN) cryptosystem, key-Ordered decisional learning parity with noise (kO-DLPN), and KD_CS protocol’s. Titled scheme is to provide the security for the authenticated user data among the distributed physical users and devices. The proposed data sharing protocol is designed to resist the chosen-ciphertext attack (CCA) under the hardness solution for the query shared-strong diffie-hellman (SDH) problem. The evaluation of proposed work with the existing data sharing protocols in computational and communication overhead through their response time is evaluated

    Provable Secure and Efficient Digital Rights Management Authentication Scheme Using Smart Card Based on Elliptic Curve Cryptography

    Get PDF
    Since the concept of ubiquitous computing is firstly proposed by Mark Weiser, its connotation has been extending and expanding by many scholars. In pervasive computing application environment, many kinds of small devices containing smart cart are used to communicate with others. In 2013, Yang et al. proposed an enhanced authentication scheme using smart card for digital rights management. They demonstrated that their scheme is secure enough. However, Mishra et al. pointed out that Yang et al.’s scheme suffers from the password guessing attack and the denial of service attack. Moreover, they also demonstrated that Yang et al.’s scheme is not efficient enough when the user inputs an incorrect password. In this paper, we analyze Yang et al.’s scheme again, and find that their scheme is vulnerable to the session key attack. And, there are some mistakes in their scheme. To surmount the weakness of Yang et al.’s scheme, we propose a more efficient and provable secure digital rights management authentication scheme using smart card based on elliptic curve cryptography

    Foreword and editorial

    Full text link

    Multifactor Authentication Key Management System based Security Model Using Effective Handover Tunnel with IPV6

    Get PDF
    In the current modern world, the way of life style is being completely changed due to the emerging technologies which are reflected in treating the patients too. As there is a tremendous growth in population, the existing e-Healthcare methods are not efficient enough to deal with numerous medical data. There is a delay in caring of patient health as communication networks are poor in quality and moreover smart medical resources are lacking and hence severe causes are experienced in the health of patient. However, authentication is considered as a major challenge ensuring that the illegal participants are not permitted to access the medical data present in cloud. To provide security, the authentication factors required are smart card, password and biometrics. Several approaches based on these are authentication factors are presented for e-Health clouds so far. But mostly serious security defects are experienced with these protocols and even the computation and communication overheads are high. Thus, keeping in mind all these challenges, a novel Multifactor Key management-based authentication by Tunnel IPv6 (MKMA- TIPv6) protocol is introduced for e-Health cloud which prevents main attacks like user anonymity, guessing offline password, impersonation, and stealing smart cards. From the analysis, it is proved that this protocol is effective than the existing ones such as Pair Hand (PH), Linear Combination Authentication Protocol (LCAP), Robust Elliptic Curve Cryptography-based Three factor Authentication (RECCTA) in terms storage cost, Encryption time, Decryption time, computation cost, energy consumption and speed. Hence, the proposed MKMA- TIPv6 achieves 35bits of storage cost, 60sec of encryption time, 50sec decryption time, 45sec computational cost, 50% of energy consumption and 80% speed
    • …
    corecore