1,520 research outputs found

    Integrating CLIPS applications into heterogeneous distributed systems

    Get PDF
    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center

    The communication processor of TUMULT-64

    Get PDF
    Tumult (Twente University MULTi-processor system) is a modular extendible multi-processor system designed and implemented at the Twente University of Technology in co-operation with Oce Nederland B.V. and the Dr. Neher Laboratories (Dutch PTT). Characteristics of the hardware are: MIMD type, distributed memory, message passing, high performance, real-time and fault tolerant. A distributed real-time operating system has been realized, consisting of a multi-tasking kernel per node, inter process communication via typed messages and a distributed file system. In this paper first a brief description of the system is given, after that the architecture of the communication processor will be discussed. Reduction of the communication overhead due to message passing will be emphasized.\ud \u

    Interactive Real-Time Embedded Systems Education Infused with Applied Internet Telephony

    Get PDF
    The transition from traditional circuit-switched phone systems to modern packet-based Internet telephony networks demands tools to support Voice over Internet Protocol (VoIP) development. In this paper, we introduce the XinuPhone, an integrated hardware/software approach for educating users about VoIP technology on a real-time embedded platform. We propose modular course topics for design-oriented, hands-on laboratory exercises: filter design, timing, serial communications, interrupts and resource budgeting, network transmission, and system benchmarking. Our open-source software platform encourages development and testing of new CODECs alongside existing standards, unlike similar commercial solutions. Furthermore, the supporting hardware features inexpensive, readily available components designed specifically for educational and research users on a limited budget. The XinuPhone is especially good for experimenting with design trade-offs as well as interactions between real-time software and hardware components

    Coordinating complex problem-solving among distributed intelligent agents

    Get PDF
    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet

    Concurrent Viola Jones classifiers on a portable Beowulf cluster : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Mechatronics at Massey University

    Get PDF
    Real-time Computer Vision is an interesting application for supercomputing, real-time applications (vision processing in particular) employ special purpose hardware such as DSPs to achieve high performance. This thesis explores parallel computers particularly commodity general purpose hardware. We also build a prototype to better understand the economics of supercomputing, specifically related to mobile computing - low power, rugged design by building a mobile computer. A new communication layer is built, where by the nature of the locality of the nodes allows one to optimise the protocols to reduce the latency comparably. Finally a study and in depth results of the algorithm, the Viola Jones Object detector in parallel are presented followed by reflection and future work based on the current results and platform

    A hierarchical distributed control model for coordinating intelligent systems

    Get PDF
    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    CSP methods for identifying atomic actions in the design of fault tolerant concurrent systems

    Get PDF
    Limiting the extent of error propagation when faults occur and localizing the subsequent error recovery are common concerns in the design of fault tolerant parallel processing systems, Both activities are made easier if the designer associates fault tolerance mechanisms with the underlying atomic actions of the system, With this in mind, this paper has investigated two methods for the identification of atomic actions in parallel processing systems described using CSP, Explicit trace evaluation forms the basis of the first algorithm, which enables a designer to analyze interprocess communications and thereby locate atomic action boundaries in a hierarchical fashion, The second method takes CSP descriptions of the parallel processes and uses structural arguments to infer the atomic action boundaries. This method avoids the difficulties involved with producing full trace sets, but does incur the penalty of a more complex algorithm
    • …
    corecore