19,630 research outputs found

    A proposal on reasoning methods in fuzzy rule-based classification systems

    Get PDF
    AbstractFuzzy Rule-Based Systems have been succesfully applied to pattern classification problems. In this type of classification systems, the classical Fuzzy Reasoning Method (FRM) classifies a new example with the consequent of the rule with the greatest degree of association. By using this reasoning method, we lose the information provided by the other rules with different linguistic labels which also represent this value in the pattern attribute, although probably to a lesser degree. The aim of this paper is to present new FRMs which allow us to improve the system performance, maintaining its interpretability. The common aspect of the proposals is the participation, in the classification of the new pattern, of the rules that have been fired by such pattern. We formally describe the behaviour of a general reasoning method, analyze six proposals for this general model, and present a method to learn the parameters of these FRMs by means of Genetic Algorithms, adapting the inference mechanism to the set of rules. Finally, to show the increase of the system generalization capability provided by the proposed FRMs, we point out some results obtained by their integration in a fuzzy rule generation process

    A proposal on reasoning methods in fuzzy rule-based classification systems

    Get PDF
    Fuzzy Rule-Based Systems have been succesfully applied to pattern classification problems. In this type of classification systems, the classical Fuzzy Reasoning Method (FRM) classifies a new example with the consequent of the rule with the greatest degree of association. By using this reasoning method, we lose the information provided by the other rules with different linguistic labels which also represent this value in the pattern attribute, although probably to a lesser degree. The aim of this paper is to present new FRMs which allow us to improve the system performance, maintaining its interpretability. The common aspect of the proposals is the participation, in the classification of the new pattern, of the rules that have been fired by such pattern. We formally describe the behaviour of a general reasoning method, analyze six proposals for this general model, and present a method to learn the parameters of these FRMs by means of Genetic Algorithms, adapting the inference mechanism to the set of rules. Finally, to show the increase of the system generalization capability provided by the proposed FRMs, we point out some results obtained by their integration in a fuzzy rule generation process.CICYT TIC96-077

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Expert System for Crop Disease based on Graph Pattern Matching: A proposal

    Get PDF
    Para la agroindustria, las enfermedades en cultivos constituyen uno de los problemas más frecuentes que generan grandes pérdidas económicas y baja calidad en la producción. Por otro lado, desde las ciencias de la computación, han surgido diferentes herramientas cuya finalidad es mejorar la prevención y el tratamiento de estas enfermedades. En este sentido, investigaciones recientes proponen el desarrollo de sistemas expertos para resolver este problema haciendo uso de técnicas de minería de datos e inteligencia artificial, como inferencia basada en reglas, árboles de decisión, redes bayesianas, entre otras. Además, los grafos pueden ser usados para el almacenamiento de los diferentes tipos de variables que se encuentran presentes en un ambiente de cultivos, permitiendo la aplicación de técnicas de minería de datos en grafos, como el emparejamiento de patrones en los mismos. En este artículo presentamos una visión general de las temáticas mencionadas y una propuesta de un sistema experto para enfermedades en cultivos, basado en emparejamiento de patrones en grafos.For agroindustry, crop diseases constitute one of the most common problems that generate large economic losses and low production quality. On the other hand, from computer science, several tools have emerged in order to improve the prevention and treatment of these diseases. In this sense, recent research proposes the development of expert systems to solve this problem, making use of data mining and artificial intelligence techniques like rule-based inference, decision trees, Bayesian network, among others. Furthermore, graphs can be used for storage of different types of variables that are present in an environment of crops, allowing the application of graph data mining techniques like graph pattern matching. Therefore, in this paper we present an overview of the above issues and a proposal of an expert system for crop disease based on graph pattern matching

    Constructing Ontology-Based Cancer Treatment Decision Support System with Case-Based Reasoning

    Full text link
    Decision support is a probabilistic and quantitative method designed for modeling problems in situations with ambiguity. Computer technology can be employed to provide clinical decision support and treatment recommendations. The problem of natural language applications is that they lack formality and the interpretation is not consistent. Conversely, ontologies can capture the intended meaning and specify modeling primitives. Disease Ontology (DO) that pertains to cancer's clinical stages and their corresponding information components is utilized to improve the reasoning ability of a decision support system (DSS). The proposed DSS uses Case-Based Reasoning (CBR) to consider disease manifestations and provides physicians with treatment solutions from similar previous cases for reference. The proposed DSS supports natural language processing (NLP) queries. The DSS obtained 84.63% accuracy in disease classification with the help of the ontology

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019
    corecore