1,444 research outputs found

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Smart Camera Robotic Assistant for Laparoscopic Surgery

    Get PDF
    The cognitive architecture also includes learning mechanisms to adapt the behavior of the robot to the different ways of working of surgeons, and to improve the robot behavior through experience, in a similar way as a human assistant would do. The theoretical concepts of this dissertation have been validated both through in-vitro experimentation in the labs of medical robotics of the University of Malaga and through in-vivo experimentation with pigs in the IACE Center (Instituto Andaluz de Cirugía Experimental), performed by expert surgeons.In the last decades, laparoscopic surgery has become a daily practice in operating rooms worldwide, which evolution is tending towards less invasive techniques. In this scenario, robotics has found a wide field of application, from slave robotic systems that replicate the movements of the surgeon to autonomous robots able to assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. However, these systems require the direct supervision of the surgeon, and its capacity of making decisions and adapting to dynamic environments is very limited. This PhD dissertation presents the design and implementation of a smart camera robotic assistant to collaborate with the surgeon in a real surgical environment. First, it presents the design of a novel camera robotic assistant able to augment the capacities of current vision systems. This robotic assistant is based on an intra-abdominal camera robot, which is completely inserted into the patient’s abdomen and it can be freely moved along the abdominal cavity by means of magnetic interaction with an external magnet. To provide the camera with the autonomy of motion, the external magnet is coupled to the end effector of a robotic arm, which controls the shift of the camera robot along the abdominal wall. This way, the robotic assistant proposed in this dissertation has six degrees of freedom, which allow providing a wider field of view compared to the traditional vision systems, and also to have different perspectives of the operating area. On the other hand, the intelligence of the system is based on a cognitive architecture specially designed for autonomous collaboration with the surgeon in real surgical environments. The proposed architecture simulates the behavior of a human assistant, with a natural and intuitive human-robot interface for the communication between the robot and the surgeon

    Deep Learning Methods for Industry and Healthcare

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Intentional dialogues in multi-agent systems based on ontologies and argumentation

    Get PDF
    Some areas of application, for example, healthcare, are known to resist the replacement of human operators by fully autonomous systems. It is typically not transparent to users how artificial intelligence systems make decisions or obtain information, making it difficult for users to trust them. To address this issue, we investigate how argumentation theory and ontology techniques can be used together with reasoning about intentions to build complex natural language dialogues to support human decision-making. Based on such an investigation, we propose MAIDS, a framework for developing multi-agent intentional dialogue systems, which can be used in different domains. Our framework is modular so that it can be used in its entirety or just the modules that fulfil the requirements of each system to be developed. Our work also includes the formalisation of a novel dialogue-subdialogue structure with which we can address ontological or theory-of-mind issues and later return to the main subject. As a case study, we have developed a multi-agent system using the MAIDS framework to support healthcare professionals in making decisions on hospital bed allocations. Furthermore, we evaluated this multi-agent system with domain experts using real data from a hospital. The specialists who evaluated our system strongly agree or agree that the dialogues in which they participated fulfil Cohen’s desiderata for task-oriented dialogue systems. Our agents have the ability to explain to the user how they arrived at certain conclusions. Moreover, they have semantic representations as well as representations of the mental state of the dialogue participants, allowing the formulation of coherent justifications expressed in natural language, therefore, easy for human participants to understand. This indicates the potential of the framework introduced in this thesis for the practical development of explainable intelligent systems as well as systems supporting hybrid intelligence

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Social Learning Systems: The Design of Evolutionary, Highly Scalable, Socially Curated Knowledge Systems

    Get PDF
    In recent times, great strides have been made towards the advancement of automated reasoning and knowledge management applications, along with their associated methodologies. The introduction of the World Wide Web peaked academicians’ interest in harnessing the power of linked, online documents for the purpose of developing machine learning corpora, providing dynamical knowledge bases for question answering systems, fueling automated entity extraction applications, and performing graph analytic evaluations, such as uncovering the inherent structural semantics of linked pages. Even more recently, substantial attention in the wider computer science and information systems disciplines has been focused on the evolving study of social computing phenomena, primarily those associated with the use, development, and analysis of online social networks (OSN\u27s). This work followed an independent effort to develop an evolutionary knowledge management system, and outlines a model for integrating the wisdom of the crowd into the process of collecting, analyzing, and curating data for dynamical knowledge systems. Throughout, we examine how relational data modeling, automated reasoning, crowdsourcing, and social curation techniques have been exploited to extend the utility of web-based, transactional knowledge management systems, creating a new breed of knowledge-based system in the process: the Social Learning System (SLS). The key questions this work has explored by way of elucidating the SLS model include considerations for 1) how it is possible to unify Web and OSN mining techniques to conform to a versatile, structured, and computationally-efficient ontological framework, and 2) how large-scale knowledge projects may incorporate tiered collaborative editing systems in an effort to elicit knowledge contributions and curation activities from a diverse, participatory audience
    • …
    corecore