1,435 research outputs found

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Microcredentials to support PBL

    Get PDF

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Security and Privacy of Resource Constrained Devices

    Get PDF
    The thesis aims to present a comprehensive and holistic overview on cybersecurity and privacy & data protection aspects related to IoT resource-constrained devices. Chapter 1 introduces the current technical landscape by providing a working definition and architecture taxonomy of ‘Internet of Things’ and ‘resource-constrained devices’, coupled with a threat landscape where each specific attack is linked to a layer of the taxonomy. Chapter 2 lays down the theoretical foundations for an interdisciplinary approach and a unified, holistic vision of cybersecurity, safety and privacy justified by the ‘IoT revolution’ through the so-called infraethical perspective. Chapter 3 investigates whether and to what extent the fast-evolving European cybersecurity regulatory framework addresses the security challenges brought about by the IoT by allocating legal responsibilities to the right parties. Chapters 4 and 5 focus, on the other hand, on ‘privacy’ understood by proxy as to include EU data protection. In particular, Chapter 4 addresses three legal challenges brought about by the ubiquitous IoT data and metadata processing to EU privacy and data protection legal frameworks i.e., the ePrivacy Directive and the GDPR. Chapter 5 casts light on the risk management tool enshrined in EU data protection law, that is, Data Protection Impact Assessment (DPIA) and proposes an original DPIA methodology for connected devices, building on the CNIL (French data protection authority) model

    Data ethics : building trust : how digital technologies can serve humanity

    Get PDF
    Data is the magic word of the 21st century. As oil in the 20th century and electricity in the 19th century: For citizens, data means support in daily life in almost all activities, from watch to laptop, from kitchen to car, from mobile phone to politics. For business and politics, data means power, dominance, winning the race. Data can be used for good and bad, for services and hacking, for medicine and arms race. How can we build trust in this complex and ambiguous data world? How can digital technologies serve humanity? The 45 articles in this book represent a broad range of ethical reflections and recommendations in eight sections: a) Values, Trust and Law, b) AI, Robots and Humans, c) Health and Neuroscience, d) Religions for Digital Justice, e) Farming, Business, Finance, f) Security, War, Peace, g) Data Governance, Geopolitics, h) Media, Education, Communication. The authors and institutions come from all continents. The book serves as reading material for teachers, students, policy makers, politicians, business, hospitals, NGOs and religious organisations alike. It is an invitation for dialogue, debate and building trust! The book is a continuation of the volume “Cyber Ethics 4.0” published in 2018 by the same editors

    Evaluating EEG–EMG Fusion-Based Classification as a Method for Improving Control of Wearable Robotic Devices for Upper-Limb Rehabilitation

    Get PDF
    Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices. One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor fusion techniques have been proposed to combine EEG and EMG; however, further development is required to enhance the capabilities of EEG–EMG fusion beyond basic motion classification. To this end, the goals of this thesis were to investigate expanded methods of EEG–EMG fusion and to develop a novel control system based on the incorporation of EEG–EMG fusion classifiers. A dataset of EEG and EMG signals were collected during dynamic elbow flexion–extension motions and used to develop EEG–EMG fusion models to classify task weight, as well as motion intention. A variety of fusion methods were investigated, such as a Weighted Average decision-level fusion (83.01 ± 6.04% accuracy) and Convolutional Neural Network-based input-level fusion (81.57 ± 7.11% accuracy), demonstrating that EEG–EMG fusion can classify more indirect tasks. A novel control system, referred to as a Task Weight Selective Controller (TWSC), was implemented using a Gain Scheduling-based approach, dictated by external load estimations from an EEG–EMG fusion classifier. To improve system stability, classifier prediction debouncing was also proposed to reduce misclassifications through filtering. Performance of the TWSC was evaluated using a developed upper-limb brace simulator. Due to simulator limitations, no significant difference in error was observed between the TWSC and PID control. However, results did demonstrate the feasibility of prediction debouncing, showing it provided smoother device motion. Continued development of the TWSC, and EEG–EMG fusion techniques will ultimately result in wearable devices that are able to adapt to changing loads more effectively, serving to improve the user experience during operation
    corecore