8,911 research outputs found

    GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond

    Get PDF
    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the "Binoth-Les-Houches-Accord" interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.Comment: replaced by published version and reference adde

    Computational Particle Physics for Event Generators and Data Analysis

    Full text link
    High-energy physics data analysis relies heavily on the comparison between experimental and simulated data as stressed lately by the Higgs search at LHC and the recent identification of a Higgs-like new boson. The first link in the full simulation chain is the event generation both for background and for expected signals. Nowadays event generators are based on the automatic computation of matrix element or amplitude for each process of interest. Moreover, recent analysis techniques based on the matrix element likelihood method assign probabilities for every event to belong to any of a given set of possible processes. This method originally used for the top mass measurement, although computing intensive, has shown its power at LHC to extract the new boson signal from the background. Serving both needs, the automatic calculation of matrix element is therefore more than ever of prime importance for particle physics. Initiated in the eighties, the techniques have matured for the lowest order calculations (tree-level), but become complex and CPU time consuming when higher order calculations involving loop diagrams are necessary like for QCD processes at LHC. New calculation techniques for next-to-leading order (NLO) have surfaced making possible the generation of processes with many final state particles (up to 6). If NLO calculations are in many cases under control, although not yet fully automatic, even higher precision calculations involving processes at 2-loops or more remain a big challenge. After a short introduction to particle physics and to the related theoretical framework, we will review some of the computing techniques that have been developed to make these calculations automatic. The main available packages and some of the most important applications for simulation and data analysis, in particular at LHC will also be summarized.Comment: 19 pages, 11 figures, Proceedings of CCP (Conference on Computational Physics) Oct. 2012, Osaka (Japan) in IOP Journal of Physics: Conference Serie

    GoSam: A program for automated one-loop Calculations

    Full text link
    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples.Comment: 10 pages, Talk given at the International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), Uxbridge, London, September 201

    Automation of NLO QCD and EW corrections with Sherpa and Recola

    Full text link
    This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa+Recola framework allows for the computation of -in principle- any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.Comment: 38 pages, 29 figures. Matches the published version (few typos corrected

    HW/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO

    Get PDF
    We present a generator for the production of a Higgs boson H in association with a vector boson V=W or Z (including subsequent V decay) plus zero and one jet, that can be used in conjunction with general-purpose shower Monte Carlo generators, according to the POWHEG method, as implemented within the POWHEG BOX framework. We have computed the virtual corrections using GoSam, a program for the automatic construction of virtual amplitudes. In order to do so, we have built a general interface of the POWHEG BOX to the GoSam package. With this addition, the construction of a POWHEG generator within the POWHEG BOX is now fully automatized, except for the construction of the Born phase space. Our HV + 1 jet generators can be run with the recently proposed MiNLO method for the choice of scales and the inclusion of Sudakov form factors. Since the HV production is very similar to V production, we were able to apply an improved MiNLO procedure, that was recently used in H and V production, also in the present case. This procedure is such that the resulting generator achieves NLO accuracy not only for inclusive distributions in HV + 1 jet production but also in HV production, i.e. when the associated jet is not resolved, yielding a further example of matched calculation with no matching scale.Comment: 22 pages, 18 figures. Version accepted for publication on JHE

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200

    Modern Feynman Diagrammatic One-Loop Calculations

    Full text link
    In this talk we present techniques for calculating one-loop amplitudes for multi-leg processes using Feynman diagrammatic methods in a semi-algebraic context. Our approach combines the advantages of the different methods allowing for a fast evaluation of the amplitude while monitoring the numerical stability of the calculation. In phase space regions close to singular kinematics we use a method avoiding spurious Gram determinants in the calculation. As an application of our approach we report on the status of the calculation of the amplitude for the process pp→bbˉbbˉ+Xpp\to b\bar{b}b\bar{b}+X.Comment: 10 pages, 2 figures; contribution to the proceedings of the CPP2010 Workshop, 23-25 Sep. 2010, KEK, Tsukuba, Japa

    NLO merging in tt+jets

    Full text link
    In this talk the application of the recently introduced methods to merge NLO calculations of successive jet multiplicities to the production of top pairs in association with jets will be discussed, in particular a fresh look is taken at the top quark forward-backward asymmetries. Emphasis will be put on the achieved theoretical accuracy and the associated perturbative and non-perturbative error estimates.Comment: 6 pages, 3 figures, proceedings contribution for EPS 2013, Stockholm, 17-24 Jul
    • …
    corecore