1,085 research outputs found

    Group Key Management in Wireless Sensor Networks: Introducing Context for Managing the Re-keying Process

    Get PDF
    This paper proposes an algorithmic solution to Group Key Management (GKM) in Wireless Sensor Networks (WSN), which could address a single point of failure in cybersecurity. The paper moves away from the traditional (de)centralized and distributed solution in GKM and focuses on GKM decision making based on a) the context in which WSN and their nodes communicate, and b) the semantic which describe the environment where WSN and their nodes reside. The proposed algorithm defines which node, within the WSN, could start a re-keying process by generating a group key, and why/how this decision on the re-keying has been made. The algorithm is computable and thus it would be feasible to implement it in software applications built upon a set of WSN nodes in constantly changeable and dynamic mobile computing environments

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Take It To The Bank: How Land Banks Are Strengthening America's Neighborhoods

    Get PDF
    This report scans the land banking field nationally and reports on the scope and state of this movement. It also includes insights and recommendations for land bank practitioners, based on Community Progress staff members' many collective years of experience working with land banks across the country. There is no land bank model kit. There are, however, common attributes of effective and successful land banks that current and future land bank staff, practitioners, governments, and partner organizations can adopt. This report is intended to help shorten the learning curve

    A Secure and Efficient Communications Architecture for Global Information Grid Users via Cooperating Space Assets

    Get PDF
    With the Information Age in full and rapid development, users expect to have global, seamless, ubiquitous, secure, and efficient communications capable of providing access to real-time applications and collaboration. The United States Department of Defense’s (DoD) Network-Centric Enterprise Services initiative, along with the notion of pushing the “power to the edge,” aims to provide end-users with maximum situational awareness, a comprehensive view of the battlespace, all within a secure networking environment. Building from previous AFIT research efforts, this research developed a novel security framework architecture to address the lack of efficient and scalable secure multicasting in the low earth orbit satellite network environment. This security framework architecture combines several key aspects of different secure group communications architectures in a new way that increases efficiency and scalability, while maintaining the overall system security level. By implementing this security architecture in a deployed environment with heterogeneous communications users, reduced re-keying frequency will result. Less frequent re-keying means more resources are available for throughput as compared to security overhead. This translates to more transparency to the end user; it will seem as if they have a “larger pipe” for their network links. As a proof of concept, this research developed and analyzed multiple mobile communication environment scenarios to demonstrate the superior re-keying advantage offered by the novel “Hubenko Security Framework Architecture” over traditional and clustered multicast security architectures. For example, in the scenario containing a heterogeneous mix of user types (Stationary, Ground, Sea, and Air), the Hubenko Architecture achieved a minimum ten-fold reduction in total keys distributed as compared to other known architectures. Another experiment demonstrated the Hubenko Architecture operated at 6% capacity while the other architectures operated at 98% capacity. In the 80% overall mobility experiment with 40% Air users, the other architectures re-keying increased 900% over the Stationary case, whereas the Hubenko Architecture only increased 65%. This new architecture is extensible to numerous secure group communications environments beyond the low earth orbit satellite network environment, including unmanned aerial vehicle swarms, wireless sensor networks, and mobile ad hoc networks

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschĂ€ftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist fĂŒr die sichere Kommunikation zwischen mehreren EntitĂ€ten unerlĂ€sslich. Ein Bestandteil sind digitale Signaturen, fĂŒr deren Erstellung man kryptographische SchlĂŒssel benötigt. Bei der Verifikation muss zusĂ€tzlich die AuthentizitĂ€t und die Autorisierung des Unterzeichners gewĂ€hrleistet werden. DafĂŒr mĂŒssen SchlĂŒssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit hĂ€ufig wechselnden Teilnehmern zum Einsatz kommen, mĂŒssen die SchlĂŒssel auch widerruflich sein. In AnwendungsfĂ€llen mit eingeschrĂ€nkter Netz-, Rechen- und SpeicherkapazitĂ€t ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem SchlĂŒssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von SchlĂŒsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fĂ€llt nur geringer zusĂ€tzlicher Rechen- oder Speicheraufwand an. Ferner vervollstĂ€ndigt die Verwendung von IdentitĂ€tsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. HierfĂŒr liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer prĂ€zisen Definition der Sicherheitsziele werden fĂŒr jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von IdentitĂ€tsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum SchlĂŒsselaustausch, die ursprĂŒnglich fĂŒr vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen KapazitĂ€ten der ZielgerĂ€te gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und Ă€hnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestĂŒckt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der KomplexitĂ€t gegenĂŒber anderen LösungsansĂ€tzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch AnwendungsfĂ€lle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen fĂŒr solche Erweiterungen, die aktuell diskutiert und entwickelt werden

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes
    • 

    corecore