13,089 research outputs found

    A proportional hazards model for time-to-event data with epidemiological bias

    Get PDF
    In hepatitis C virus (HCV) epidemiological studies, the estimation of progression to cirrhosis and prognostic effects of associated risk factors is of particular importance when projecting national disease burden. However, the progression estimates obtained from conventional methods could be distorted due to a referral bias (Fu et al., 2007). In recent years, several approaches have been developed to handle this epidemiological bias in analyzing time-to-event data. This paper proposes a new estimation approach for this problem under a semiparametric proportional hazards framework. The new method uses a martingale approach based on the mean rate function, rather than the traditional hazard rate function, and develops an iterative algorithm to estimate the Cox regression parameter and baseline hazard rate simultaneously. The consistency and asymptotic properties of the proposed estimators are derived theoretically and evaluated via simulation studies. The new method is also applied to a real HCV cohort study

    Bayesian correction for covariate measurement error: a frequentist evaluation and comparison with regression calibration

    Get PDF
    Bayesian approaches for handling covariate measurement error are well established, and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration (RC), arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to RC, and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next we describe the closely related maximum likelihood and multiple imputation approaches, and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of RC and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey

    Analysis of time-to-event for observational studies: Guidance to the use of intensity models

    Full text link
    This paper provides guidance for researchers with some mathematical background on the conduct of time-to-event analysis in observational studies based on intensity (hazard) models. Discussions of basic concepts like time axis, event definition and censoring are given. Hazard models are introduced, with special emphasis on the Cox proportional hazards regression model. We provide check lists that may be useful both when fitting the model and assessing its goodness of fit and when interpreting the results. Special attention is paid to how to avoid problems with immortal time bias by introducing time-dependent covariates. We discuss prediction based on hazard models and difficulties when attempting to draw proper causal conclusions from such models. Finally, we present a series of examples where the methods and check lists are exemplified. Computational details and implementation using the freely available R software are documented in Supplementary Material. The paper was prepared as part of the STRATOS initiative.Comment: 28 pages, 12 figures. For associated Supplementary material, see http://publicifsv.sund.ku.dk/~pka/STRATOSTG8

    Bias of Maximum-Likelihood estimates in logistic and Cox regression models: A comparative simulation study

    Get PDF
    Parameter estimates of logistic and Cox regression models are biased for finite samples. In a simulation study we investigated for both models the behaviour of the bias in relation to sample size and further parameters. In the case of a dichotomous explanatory variable x the magnitude of the bias is strongly influenced by the baseline risk defined by the constants of the models and the risk resulting for the high risk group. To conduct a direct comparison of the bias of the two models analyses were based on the same simulated data. Overall, the bias of the two models appear to be similar, however, the Cox model has less bias in situations where the baseline risk is high
    • …
    corecore