348 research outputs found

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Dynamic Time-domain Duplexing for Self-backhauled Millimeter Wave Cellular Networks

    Full text link
    Millimeter wave (mmW) bands between 30 and 300 GHz have attracted considerable attention for next-generation cellular networks due to vast quantities of available spectrum and the possibility of very high-dimensional antenna ar-rays. However, a key issue in these systems is range: mmW signals are extremely vulnerable to shadowing and poor high-frequency propagation. Multi-hop relaying is therefore a natural technology for such systems to improve cell range and cell edge rates without the addition of wired access points. This paper studies the problem of scheduling for a simple infrastructure cellular relay system where communication between wired base stations and User Equipment follow a hierarchical tree structure through fixed relay nodes. Such a systems builds naturally on existing cellular mmW backhaul by adding mmW in the access links. A key feature of the proposed system is that TDD duplexing selections can be made on a link-by-link basis due to directional isolation from other links. We devise an efficient, greedy algorithm for centralized scheduling that maximizes network utility by jointly optimizing the duplexing schedule and resources allocation for dense, relay-enhanced OFDMA/TDD mmW networks. The proposed algorithm can dynamically adapt to loading, channel conditions and traffic demands. Significant throughput gains and improved resource utilization offered by our algorithm over the static, globally-synchronized TDD patterns are demonstrated through simulations based on empirically-derived channel models at 28 GHz.Comment: IEEE Workshop on Next Generation Backhaul/Fronthaul Networks - BackNets 201

    A Review of MAC Scheduling Algorithms in LTE System

    Get PDF
    The recent wireless communication networks rely on the new technology named Long Term Evolution (LTE) to offer high data rate real-time (RT) traffic with better Quality of Service (QoS) for the increasing demand of customer requirement. LTE provide low latency for real-time services with high throughput, with the help of two-level packet retransmission. Hybrid Automatic Repeat Request (HARQ) retransmission at the Medium Access Control (MAC) layer of LTE networks achieves error-free data transmission. The performance of the LTE networks mainly depends on how effectively this HARQ adopted in the latest communication standard, Universal Mobile Telecommunication System (UMTS). The major challenge in LTE is to balance QoS and fairness among the users. Hence, it is very essential to design a down link scheduling scheme to get the expected service quality to the customers and to utilize the system resources efficiently. This paper provides a comprehensive literature review of LTE MAC layer and six types of QoS/Channel-aware downlink scheduling algorithms designed for this purpose. The contributions of this paper are to identify the gap of knowledge in the downlink scheduling procedure and to point out the future research direction. Based on the comparative study of algorithms taken for the review, this paper is concluded that the EXP Rule scheduler is most suited for LTE networks due to its characteristics of less Packet Loss Ratio (PLR), less Packet Delay (PD), high throughput, fairness and spectral efficiency

    Smart Grid communications in high traffic environments

    Get PDF
    The establishment of a previously non-existent data class known as the Smart Grid will pose many difficulties on current and future communication infrastructure. It is imperative that the Smart Grid (SG), as the reactionary and monitory arm of the Power Grid (PG), be able to communicate effectively between grid controllers and individual User Equipment (UE). By doing so, the successful implementation of SG applications can occur, including support for higher capacities of Renewable Energy Resources. As the SG matures, the number of UEs required is expected to rise increasing the traffic in an already burdened communications network. This thesis aims to optimally allocate radio resources such that the SG Quality of Service (QoS) requirements are satisfied with minimal effect on pre-existing traffic. To address this resource allocation problem, a Lotka-Volterra (LV) based resource allocation and scheduler was developed due to its ability to easily adapt to the dynamics of a telecommunications environment. Unlike previous resource allocation algorithms, the LV scheme allocated resources to each class as a function of its growth rate. By doing so, the QoS requirements of the SG were satisfied, with minimal effect on pre-existing traffic. Class queue latencies were reduced by intelligent scheduling of periodic traffic and forward allocation of resources. This thesis concludes that the SG will have a large effect on the telecommunications environment if not successfully controlled and monitored. This effect can be minimized by utilizing the proposed LV based resource allocation and scheduler system. Furthermore, it was shown that the allocation of periodic SG radio channels was optimized by continual updates of the LV model. This ensured the QoS requirements of the SG are achieved and provided enhanced performance. Successful integration of SG UEs in a wireless network can pave the way for increased capacity of Renewable and Intermittent Energy Resources operating on the PG

    A survey of green scheduling schemes for homogeneous and heterogeneous cellular networks

    Full text link
    • …
    corecore