13,613 research outputs found

    Convex Optimal Uncertainty Quantification

    Get PDF
    Optimal uncertainty quantification (OUQ) is a framework for numerical extreme-case analysis of stochastic systems with imperfect knowledge of the underlying probability distribution. This paper presents sufficient conditions under which an OUQ problem can be reformulated as a finite-dimensional convex optimization problem, for which efficient numerical solutions can be obtained. The sufficient conditions include that the objective function is piecewise concave and the constraints are piecewise convex. In particular, we show that piecewise concave objective functions may appear in applications where the objective is defined by the optimal value of a parameterized linear program.Comment: Accepted for publication in SIAM Journal on Optimizatio

    Strong Stationarity Conditions for Optimal Control of Hybrid Systems

    Full text link
    We present necessary and sufficient optimality conditions for finite time optimal control problems for a class of hybrid systems described by linear complementarity models. Although these optimal control problems are difficult in general due to the presence of complementarity constraints, we provide a set of structural assumptions ensuring that the tangent cone of the constraints possesses geometric regularity properties. These imply that the classical Karush-Kuhn-Tucker conditions of nonlinear programming theory are both necessary and sufficient for local optimality, which is not the case for general mathematical programs with complementarity constraints. We also present sufficient conditions for global optimality. We proceed to show that the dynamics of every continuous piecewise affine system can be written as the optimizer of a mathematical program which results in a linear complementarity model satisfying our structural assumptions. Hence, our stationarity results apply to a large class of hybrid systems with piecewise affine dynamics. We present simulation results showing the substantial benefits possible from using a nonlinear programming approach to the optimal control problem with complementarity constraints instead of a more traditional mixed-integer formulation.Comment: 30 pages, 4 figure

    Shape-constrained Estimation of Value Functions

    Full text link
    We present a fully nonparametric method to estimate the value function, via simulation, in the context of expected infinite-horizon discounted rewards for Markov chains. Estimating such value functions plays an important role in approximate dynamic programming and applied probability in general. We incorporate "soft information" into the estimation algorithm, such as knowledge of convexity, monotonicity, or Lipchitz constants. In the presence of such information, a nonparametric estimator for the value function can be computed that is provably consistent as the simulated time horizon tends to infinity. As an application, we implement our method on price tolling agreement contracts in energy markets

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls
    • …
    corecore