21 research outputs found

    Implementation of a neural network-based electromyographic control system for a printed robotic hand

    Get PDF
    3D printing has revolutionized the manufacturing process reducing costs and time, but only when combined with robotics and electronics, this structures could develop their full potential. In order to improve the available printable hand designs, a control system based on electromyographic (EMG) signals has been implemented, so that different movement patterns can be recognized and replicated in the bionic hand in real time. This control system has been developed in Matlab/ Simulink comprising EMG signal acquisition, feature extraction, dimensionality reduction and pattern recognition through a trained neural-network. Pattern recognition depends on the features used, their dimensions and the time spent in signal processing. Finding balance between this execution time and the input features of the neural network is a crucial step for an optimal classification.Ingeniería Biomédic

    Instance-based Learning with Prototype Reduction for Real-Time Proportional Myocontrol: A Randomized User Study Demonstrating Accuracy-preserving Data Reduction for Prosthetic Embedded Systems

    Full text link
    This work presents the design, implementation and validation of learning techniques based on the kNN scheme for gesture detection in prosthetic control. To cope with high computational demands in instance-based prediction, methods of dataset reduction are evaluated considering real-time determinism to allow for the reliable integration into battery-powered portable devices. The influence of parameterization and varying proportionality schemes is analyzed, utilizing an eight-channel-sEMG armband. Besides offline cross-validation accuracy, success rates in real-time pilot experiments (online target achievement tests) are determined. Based on the assessment of specific dataset reduction techniques' adequacy for embedded control applications regarding accuracy and timing behaviour, Decision Surface Mapping (DSM) proves itself promising when applying kNN on the reduced set. A randomized, double-blind user study was conducted to evaluate the respective methods (kNN and kNN with DSM-reduction) against Ridge Regression (RR) and RR with Random Fourier Features (RR-RFF). The kNN-based methods performed significantly better (p<0.0005) than the regression techniques. Between DSM-kNN and kNN, there was no statistically significant difference (significance level 0.05). This is remarkable in consideration of only one sample per class in the reduced set, thus yielding a reduction rate of over 99% while preserving success rate. The same behaviour could be confirmed in an extended user study. With k=1, which turned out to be an excellent choice, the runtime complexity of both kNN (in every prediction step) as well as DSM-kNN (in the training phase) becomes linear concerning the number of original samples, favouring dependable wearable prosthesis applications

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Solar power satellite. Concept evaluation. Activities report. Volume 2: Detailed report

    Get PDF
    Comparative data are presented among various design approaches to thermal engine and photovoltaic SPS (Solar Power System) concepts, to provide criteria for selecting the most promising systems for more detailed definition. The major areas of the SPS system to be examined include solar cells, microwave power transmission, transportation, structure, rectenna, energy payback, resources, and environmental issues

    Instance-based learning with prototype reduction for real-time proportional myocontrol: a randomized user study demonstrating accuracy-preserving data reduction for prosthetic embedded systems

    Get PDF
    This work presents the design, implementation and validation of learning techniques based on the kNN scheme for gesture detection in prosthetic control. To cope with high computational demands in instance-based prediction, methods of dataset reduction are evaluated considering real-time determinism to allow for the reliable integration into battery-powered portable devices. The influence of parameterization and varying proportionality schemes is analyzed, utilizing an eight-channel-sEMG armband. Besides offline cross-validation accuracy, success rates in real-time pilot experiments (online target achievement tests) are determined. Based on the assessment of specific dataset reduction techniques' adequacy for embedded control applications regarding accuracy and timing behaviour, Decision Surface Mapping (DSM) proves itself promising when applying kNN on the reduced set. A randomized, double-blind user study was conducted to evaluate the respective methods (kNN and kNN with DSM-reduction) against Ridge Regression (RR) and RR with Random Fourier Features (RR-RFF). The kNN-based methods performed significantly better (p < 0.0005) than the regression techniques. Between DSM-kNN and kNN, there was no statistically significant difference (significance level 0.05). This is remarkable in consideration of only one sample per class in the reduced set, thus yielding a reduction rate of over 99% while preserving success rate. The same behaviour could be confirmed in an extended user study. With k=1, which turned out to be an excellent choice, the runtime complexity of both kNN (in every prediction step) as well as DSM-kNN (in the training phase) becomes linear concerning the number of original samples, favouring dependable wearable prosthesis applications

    Low Power Digital Filter Implementation in FPGA

    Get PDF
    Digital filters suitable for hearing aid application on low power perspective have been developed and implemented in FPGA in this dissertation. Hearing aids are primarily meant for improving hearing and speech comprehensions. Digital hearing aids score over their analog counterparts. This happens as digital hearing aids provide flexible gain besides facilitating feedback reduction and noise elimination. Recent advances in DSP and Microelectronics have led to the development of superior digital hearing aids. Many researchers have investigated several algorithms suitable for hearing aid application that demands low noise, feedback cancellation, echo cancellation, etc., however the toughest challenge is the implementation. Furthermore, the additional constraints are power and area. The device must consume as minimum power as possible to support extended battery life and should be as small as possible for increased portability. In this thesis we have made an attempt to investigate possible digital filter algorithms those are hardware configurable on low power view point. Suitability of decimation filter for hearing aid application is investigated. In this dissertation decimation filter is implemented using ‘Distributed Arithmetic’ approach.While designing this filter, it is observed that, comb-half band FIR-FIR filter design uses less hardware compared to the comb-FIR-FIR filter design. The power consumption is also less in case of comb-half band FIR-FIR filter design compared to the comb-FIR-FIR filter. This filter is implemented in Virtex-II pro board from Xilinx and the resource estimator from the system generator is used to estimate the resources. However ‘Distributed Arithmetic’ is highly serial in nature and its latency is high; power consumption found is not very low in this type of filter implementation. So we have proceeded for ‘Adaptive Hearing Aid’ using Booth-Wallace tree multiplier. This algorithm is also implemented in FPGA and power calculation of the whole system is done using Xilinx Xpower analyser. It is observed that power consumed by the hearing aid with Booth-Wallace tree multiplier is less than the hearing aid using Booth multiplier (about 25%). So we can conclude that the hearing aid using Booth-Wallace tree multiplier consumes less power comparatively. The above two approached are purely algorithmic approach. Next we proceed to combine circuit level VLSI design and with algorithmic approach for further possible reduction in power. A MAC based FDF-FIR filter (algorithm) that uses dual edge triggered latch (DET) (circuit) is used for hearing aid device. It is observed that DET based MAC FIR filter consumes less power than the traditional (single edge triggered, SET) one (about 41%). The proposed low power latch provides a power saving upto 65% in the FIR filter. This technique consumes less power compared to previous approaches that uses low power technique only at algorithmic abstraction level. The DET based MAC FIR filter is tested for real-time validation and it is observed that it works perfectly for various signals (speech, music, voice with music). The gain of the filter is tested and is found to be 27 dB (maximum) that matches with most of the hearing aid (manufacturer’s) specifications. Hence it can be concluded that FDF FIR digital filter in conjunction with low power latch is a strong candidate for hearing aid application

    A nano-tensile testing system for studying nanostructures inside an electron microscope:design, characterization and application

    Get PDF
    Mechanical properties of nanostructures could be remarkably different from their bulk counterparts owing to scale effects, which have attracted considerable research interest in recent years. However, nanomechanics studies are hindered by the difficulties of conducting well-instrumented mechanical testing. The objective of this thesis is to develop a novel tensile stage that can be used to probe mechanical properties of universal one-dimensional (1D) nanostructures, like nanowires and nanotubes, inside a scanning/transmission electron microscope (SEM/TEM). The main challenges of performing tensile tests at the nanoscale are: (1) specimen alignment and fixation on the tensile stage; (2) application and measurement of tensile force with nano-Newton resolution; (3) measurement of specimen elongation with nanometer resolution. Previous studies have shown that micro-electromechanical system (MEMS) technology combined with advanced microscopy (e.g. SEM and TEM) provides promising perspectives to address these challenges. Two types of nano-tensile stages, fabricated in a silicon on insulator (SOI) wafer, were developed in this thesis, which consisted of a comb-drive actuator and either a differential capacitive force sensor or a double clamped beam force sensor. The optimized comb-drive actuators could output an in-plane force of about 210 µN at a drive voltage of 120 V, and the force sensors achieved resolutions of better than 50 nN. Individual 1D nanostructures were placed on the MEMS device by in-situ nanomanipulations and fixed at their two ends via focused electron beam induced deposition (FEBID). A strategy of modifying device topography, e.g. in the form of trenches or pillars, was proposed to facilitate the specimen preparation by in-situ manipulation that could achieve a high yield of about 80%. The mechanical testing function of the developed micro devices was demonstrated by tensile tests on individual Co and Si nanowires (NWs) inside an SEM. The average apparent Young's modulus, tensile strength and fracture strain of the electrochemically deposited Co NWs were measured to be (75.3±14.6) GPa, (1.6±0.4) GPa and (2.2±0.6) %, respectively. The measured Young's modulus is significantly lower than that of Co in the bulk form (209 GPa), which is likely caused by structural defects (e.g. pores) and surface effects (e.g. surface contaminations and surface oxide layers). The phosphorous-doped SiNWs grown bottom up by the vapor-liquid-solid (VLS) technique showed an average Young's modulus of (170.0±2.4) GPa and a tensile strength larger than 8.3 GPa. This finding confirms that materials strength increases as their sizes scale down. The top down electroless chemically etched Si NWs show a tensile strength of 5.4 GPa. The developed MEMS devices and experimental techniques enable an alternative way of in-situ nanomechanical characterization based on electron microscopy. The design methodology and learning presented in this thesis would be useful to develop nano-tensile stages of other configurations with more advanced functions
    corecore