686 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Developing reliable anomaly detection system for critical hosts: a proactive defense paradigm

    Full text link
    Current host-based anomaly detection systems have limited accuracy and incur high processing costs. This is due to the need for processing massive audit data of the critical host(s) while detecting complex zero-day attacks which can leave minor, stealthy and dispersed artefacts. In this research study, this observation is validated using existing datasets and state-of-the-art algorithms related to the construction of the features of a host's audit data, such as the popular semantic-based extraction and decision engines, including Support Vector Machines, Extreme Learning Machines and Hidden Markov Models. There is a challenging trade-off between achieving accuracy with a minimum processing cost and processing massive amounts of audit data that can include complex attacks. Also, there is a lack of a realistic experimental dataset that reflects the normal and abnormal activities of current real-world computers. This thesis investigates the development of new methodologies for host-based anomaly detection systems with the specific aims of improving accuracy at a minimum processing cost while considering challenges such as complex attacks which, in some cases, can only be visible via a quantified computing resource, for example, the execution times of programs, the processing of massive amounts of audit data, the unavailability of a realistic experimental dataset and the automatic minimization of the false positive rate while dealing with the dynamics of normal activities. This study provides three original and significant contributions to this field of research which represent a marked advance in its body of knowledge. The first major contribution is the generation and release of a realistic intrusion detection systems dataset as well as the development of a metric based on fuzzy qualitative modeling for embedding the possible quality of realism in a dataset's design process and assessing this quality in existing or future datasets. The second key contribution is constructing and evaluating the hidden host features to identify the trivial differences between the normal and abnormal artefacts of hosts' activities at a minimum processing cost. Linux-centric features include the frequencies and ranges, frequency-domain representations and Gaussian interpretations of system call identifiers with execution times while, for Windows, a count of the distinct core Dynamic Linked Library calls is identified as a hidden host feature. The final key contribution is the development of two new anomaly-based statistical decision engines for capitalizing on the potential of some of the suggested hidden features and reliably detecting anomalies. The first engine, which has a forensic module, is based on stochastic theories including Hierarchical hidden Markov models and the second is modeled using Gaussian Mixture Modeling and Correntropy. The results demonstrate that the proposed host features and engines are competent for meeting the identified challenges

    E-commerce security enhancement and anomaly intrusion detection using machine learning techniques

    Get PDF
    With the fast growth of the Internet and the World Wide Web, security has become a major concern of many organizations, enterprises and users. Criminal attacks and intrusions into computer and information systems are spreading quickly and they can come from anywhere on the globe. Intrusion prevention measures, such as user authentication, firewalls and cryptography have been used as the first line of defence to protect computer and information systems from intrusions. As intrusion prevention alone may not be sufficient in a highly dynamic environment, such as the Internet, intrusion detection has been used as the second line of defence against intrusions. However, existing cryptography-based intrusion prevention measures implemented in software, have problems with the protection of long-term private keys and the degradation of system performance. Moreover, the security of these software-based intrusion prevention measures depends on the security of the underlying operating system, and therefore they are vulnerable to threats caused by security flaws of the underlying operating system. On the other hand, existing anomaly intrusion detection approaches usually produce excessive false alarms. They also lack in efficiency due to high construction and maintenance costs. In our approach, we employ the "defence in depth" principle to develop a solution to solve these problems. Our solution consists of two lines of defence: preventing intrusions at the first line and detecting intrusions at the second line if the prevention measures of the first line have been penetrated. At the first line of defence, our goal is to develop an encryption model that enhances communication and end-system security, and improves the performance of web-based E-commerce systems. We have developed a hardware-based RSA encryption model to address the above mentioned problems of existing software-based intrusion prevention measures. The proposed hardware-based encryption model is based on the integration of an existing web-based client/server model and embedded hardware-based RSA encryption modules. DSP embedded hardware is selected to develop the proposed encryption model because of its advanced security features and high processing capability. The experimental results showed that the proposed DSP hardware-based RSA encryption model outperformed the software-based RSA implementation running on Pentium 4 machines that have almost double clock speed of the DSP's clock speed at large RSA encryption keys. At the second line of defence, our goal is to develop an anomaly intrusion detection model that improves the detection accuracy, efficiency and adaptability of existing anomaly detection approaches. Existing anomaly detection systems are not effective as they usually produce excessive false alarms. In addition, several anomaly detection approaches suffer a serious efficiency problem due to high construction costs of the detection profiles. High construction costs will eventually reduce the applicability of these approaches in practice. Furthermore, existing anomaly detection systems lack in adaptability because no mechanisms are provided to update their detection profiles dynamically, in order to adapt to the changes of the behaviour of monitored objects. We have developed a model for program anomaly intrusion detection to address these problems. The proposed detection model uses a hidden Markov model (HMM) to characterize normal program behaviour using system calls. In order to increase the detection rate and to reduce the false alarm rate, we propose two detection schemes: a two-layer detection scheme and a fuzzy-based detection scheme. The two-layer detection scheme aims at reducing false alarms by applying a double-layer test on each sequence of test traces of system calls. On the other hand, the fuzzy-based detection scheme focuses on further improving the detection rate, as well as reducing false alarms. It employs the fuzzy inference to combine multiple sequence information to correctly determine the sequence status. The experimental results showed that the proposed detection schemes reduced false alarms by approximately 48%, compared to the normal database scheme. In addition, our detection schemes generated strong anomaly signals for all tested traces, which in turn improve the detection rate. We propose an HMM incremental training scheme with optimal initialization to address the efficiency problem by reducing the construction costs, in terms of model training time and storage demand. Unlike the HMM batch training scheme, which updates the HMM model using the complete training set, our HMM incremental training scheme incrementally updates the HMM model using one training subset at a time, until convergence. The experimental results showed that the proposed HMM incremental training scheme reduced training time four-fold, compared to the HMM batch training, based on the well-known Baum-Welch algorithm. The proposed training scheme also reduced storage demand substantially, as the size of each training subset is significantly smaller than the size of the complete training set. We also describe our complete model for program anomaly detection using system calls in chapter 8. The complete model consists of two development stages: training stage and testing stage. In the training stage, an HMM model and a normal database are constructed to represent normal program behaviour. In addition, fuzzy sets and rules are defined to represent the space and combined conditions of the sequence parameters. In the testing stage, the HMM model and the normal database, are used to generate the sequence parameters which are used as the input for the fuzzy inference engine to evaluate each sequence of system calls for anomalies and possible intrusions. The proposed detection model also provides a mechanism to update its detection profile (the HMM model and the normal database) using online training data. This makes the proposed detection model up-to-date, and therefore, maintains the detection accuracy

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates

    An intrusion detection system based on polynomial feature correlation analysis

    Full text link
    © 2017 IEEE. This paper proposes an anomaly-based Intrusion Detection System (IDS), which flags anomalous network traffic with a distance-based classifier. A polynomial approach was designed and applied in this work to extract hidden correlations from traffic related statistics in order to provide distinguishing features for detection. The proposed IDS was evaluated using the well-known KDD Cup 99 data set. Evaluation results show that the proposed system achieved better detection rates on KDD Cup 99 data set in comparison with another two state-of-the-art detection schemes. Moreover, the computational complexity of the system has been analysed in this paper and shows similar to the two state-of-the-art schemes

    Probabilistic Modeling and Inference for Obfuscated Network Attack Sequences

    Get PDF
    Prevalent computing devices with networking capabilities have become critical network infrastructure for government, industry, academia and every-day life. As their value rises, the motivation driving network attacks on this infrastructure has shifted from the pursuit of notoriety to the pursuit of profit or political gains, leading to network attack on various scales. Facing diverse network attack strategies and overwhelming alters, much work has been devoted to correlate observed malicious events to pre-defined scenarios, attempting to deduce the attack plans based on expert models of how network attacks may transpire. We started the exploration of characterizing network attacks by investigating how temporal and spatial features of attack sequence can be used to describe different types of attack sources in real data set. Attack sequence models were built from real data set to describe different attack strategies. Based on the probabilistic attack sequence model, attack predictions were made to actively predict next possible actions. Experiments through attack predictions have revealed that sophisticated attackers can employ a number of obfuscation techniques to confuse the alert correlation engine or classifier. Unfortunately, most exiting work treats attack obfuscations by developing ad-hoc fixes to specific obfuscation technique. To this end, we developed an attack modeling framework that enables a systematical analysis of obfuscations. The proposed framework represents network attack strategies as general finite order Markov models and integrates it with different attack obfuscation models to form probabilistic graphical model models. A set of algorithms is developed to inference the network attack strategies given the models and the observed sequences, which are likely to be obfuscated. The algorithms enable an efficient analysis of the impact of different obfuscation techniques and attack strategies, by determining the expected classification accuracy of the obfuscated sequences. The algorithms are developed by integrating the recursion concept in dynamic programming and the Monte-Carlo method. The primary contributions of this work include the development of the formal framework and the algorithms to evaluate the impact of attack obfuscations. Several knowledge-driven attack obfuscation models are developed and analyzed to demonstrate the impact of different types of commonly used obfuscation techniques. The framework and algorithms developed in this work can also be applied to other contexts beyond network security. Any behavior sequences that might suffer from noise and require matching to pre-defined models can use this work to recover the most likely original sequence or evaluate quantitatively the expected classification accuracy one can achieve to separate the sequences

    Flow-oriented anomaly-based detection of denial of service attacks with flow-control-assisted mitigation

    Get PDF
    Flooding-based distributed denial-of-service (DDoS) attacks present a serious and major threat to the targeted enterprises and hosts. Current protection technologies are still largely inadequate in mitigating such attacks, especially if they are large-scale. In this doctoral dissertation, the Computer Network Management and Control System (CNMCS) is proposed and investigated; it consists of the Flow-based Network Intrusion Detection System (FNIDS), the Flow-based Congestion Control (FCC) System, and the Server Bandwidth Management System (SBMS). These components form a composite defense system intended to protect against DDoS flooding attacks. The system as a whole adopts a flow-oriented and anomaly-based approach to the detection of these attacks, as well as a control-theoretic approach to adjust the flow rate of every link to sustain the high priority flow-rates at their desired level. The results showed that the misclassification rates of FNIDS are low, less than 0.1%, for the investigated DDOS attacks, while the fine-grained service differentiation and resource isolation provided within the FCC comprise a novel and powerful built-in protection mechanism that helps mitigate DDoS attacks
    • …
    corecore