22,714 research outputs found

    Sequence motifs that distinguish ATP(CTP) : tRNA nucleotidyl transferases from eubacterial poly(A) polymerases

    Get PDF
    ATP(CTP):tRNA nucleotidyl transferases, tRNA maturing enzymes found in all organisms, and eubacterial poly(A) polymerases, enzymes involved in mRNA degradation, are so similar that until now their biochemical functions could not be distinguished by their amino acid sequence. BLAST searches and analysis with the program "Sequence Space" for the prediction of functional residues revealed sequence motifs which define these two protein families. One of the poly(A) polymerase defining motifs specifies a structure that we propose to function in binding the 3' terminus of the RNA substrate. Similar motifs are found in other homopolyribonucleotidyl transferases. Phylogenetic classification of nucleotidyl tranferases from sequenced genomes reveals that eubacterial poly(A) polymerases have evolved relatively recently and are found only in a small group of bacteria and surprisingly also in plants, where they may function in organelles

    Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes

    Full text link
    Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode

    Genomics and proteomics: a signal processor's tour

    Get PDF
    The theory and methods of signal processing are becoming increasingly important in molecular biology. Digital filtering techniques, transform domain methods, and Markov models have played important roles in gene identification, biological sequence analysis, and alignment. This paper contains a brief review of molecular biology, followed by a review of the applications of signal processing theory. This includes the problem of gene finding using digital filtering, and the use of transform domain methods in the study of protein binding spots. The relatively new topic of noncoding genes, and the associated problem of identifying ncRNA buried in DNA sequences are also described. This includes a discussion of hidden Markov models and context free grammars. Several new directions in genomic signal processing are briefly outlined in the end

    Physicochemical analysis of rotavirus segment 11 supports a 'modified panhandle' structure and not the predicted alternative tRNA-like structure (TRLS)

    Get PDF
    .Rotaviruses are a major cause of acute gastroenteritis, which is often fatal in infants. The viral genome consists of 11 double-stranded RNA segments, but little is known about their cis-acting sequences and structural elements. Covariation studies and phylogenetic analysis exploring the potential structure of RNA11 of rotaviruses suggested that, besides the previously predicted "modified panhandle" structure, the 5' and 3' termini of one of the isoforms of the bovine rotavirus UKtc strain may interact to form a tRNA-like structure (TRLS). Such TRLSs have been identified in RNAs of plant viruses, where they are important for enhancing replication and packaging. However, using tRNA mimicry assays (in vitro aminoacylation and 3'- adenylation), we found no biochemical evidence for tRNA-like functions of RNA11. Capping, synthetic 3' adenylation and manipulation of divalent cation concentrations did not change this finding. NMR studies on a 5'- and 3'-deletion construct of RNA11 containing the putative intra-strand complementary sequences supported a predominant panhandle structure and did not conform to a cloverleaf fold despite the strong evidence for a predicted structure in this conserved region of the viral RNA. Additional viral or cellular factors may be needed to stabilise it into a form with tRNA-like properties

    The mitochondrial genome of the venomous cone snail conus consors

    Get PDF
    Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi) have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR) which seems to be absent in the mitochondrial DNA (mtDNA) of other cone snail species. This possible CR spans about 700 base pairs (bp) and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF) and cytochrome c oxidase subunit III (cox3). The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription

    Protein-RNA interactions: a structural analysis

    Get PDF
    A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level

    Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria

    Get PDF
    Arabidopsis thaliana mutants prors1-1 and -2 were identified on the basis of a decrease in effective photosystem II quantum yield. Mutations were localized to the 5'-untranslated region of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), which acts in both plastids and mitochondria. In prors1-1 and -2, PRORS1 expression is reduced, along with protein synthesis in both organelles. PRORS1 null alleles (prors1-3 and -4) result in embryo sac and embryo development arrest. In mutants with the leaky prors1-1 and -2 alleles, transcription of nuclear genes for proteins involved in photosynthetic light reactions is downregulated, whereas genes for other chloroplast proteins are upregulated. Downregulation of nuclear photosynthetic genes is not associated with a marked increase in the level of reactive oxygen species in leaves and persists in the dark, suggesting that the transcriptional response is light and photooxidative stress independent. The mrpl11 and prpl11 mutants are impaired in the mitochondrial and plastid ribosomal L11 proteins, respectively. The prpl11 mrpl11 double mutant, but neither of the single mutants, resulted in strong downregulation of nuclear photosynthetic genes, like that seen in leaky mutants for PRORS1, implying that, when organellar translation is perturbed, signals derived from both types of organelles cooperate in the regulation of nuclear photosynthetic gene expression

    Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3.

    Get PDF
    The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p
    corecore