368 research outputs found

    An asymptotically superlinearly convergent semismooth Newton augmented Lagrangian method for Linear Programming

    Get PDF
    Powerful interior-point methods (IPM) based commercial solvers, such as Gurobi and Mosek, have been hugely successful in solving large-scale linear programming (LP) problems. The high efficiency of these solvers depends critically on the sparsity of the problem data and advanced matrix factorization techniques. For a large scale LP problem with data matrix AA that is dense (possibly structured) or whose corresponding normal matrix AATAA^T has a dense Cholesky factor (even with re-ordering), these solvers may require excessive computational cost and/or extremely heavy memory usage in each interior-point iteration. Unfortunately, the natural remedy, i.e., the use of iterative methods based IPM solvers, although can avoid the explicit computation of the coefficient matrix and its factorization, is not practically viable due to the inherent extreme ill-conditioning of the large scale normal equation arising in each interior-point iteration. To provide a better alternative choice for solving large scale LPs with dense data or requiring expensive factorization of its normal equation, we propose a semismooth Newton based inexact proximal augmented Lagrangian ({\sc Snipal}) method. Different from classical IPMs, in each iteration of {\sc Snipal}, iterative methods can efficiently be used to solve simpler yet better conditioned semismooth Newton linear systems. Moreover, {\sc Snipal} not only enjoys a fast asymptotic superlinear convergence but is also proven to enjoy a finite termination property. Numerical comparisons with Gurobi have demonstrated encouraging potential of {\sc Snipal} for handling large-scale LP problems where the constraint matrix AA has a dense representation or AATAA^T has a dense factorization even with an appropriate re-ordering.Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows

    Get PDF
    The effectiveness of sparse matrix techniques for directly solving large-scale linear least-squares problems is severely limited if the system matrix A has one or more nearly dense rows. In this paper, we partition the rows of A into sparse rows and dense rows (A s and A d ) and apply the Schur complement approach. A potential difficulty is that the reduced normal matrix AsTA s is often rank-deficient, even if A is of full rank. To overcome this, we propose explicitly removing null columns of A s and then employing a regularization parameter and using the resulting Cholesky factors as a preconditioner for an iterative solver applied to the symmetric indefinite reduced augmented system. We consider complete factorizations as well as incomplete Cholesky factorizations of the shifted reduced normal matrix. Numerical experiments are performed on a range of large least-squares problems arising from practical applications. These demonstrate the effectiveness of the proposed approach when combined with either a sparse parallel direct solver or a robust incomplete Cholesky factorization algorithm

    Solving mixed sparse-dense linear least-squares problems by preconditioned iterative methods

    Get PDF
    The efficient solution of large linear least-squares problems in which the system matrix A contains rows with very different densities is challenging. Previous work has focused on direct methods for problems in which A has a few relatively dense rows. These rows are initially ignored, a factorization of the sparse part is computed using a sparse direct solver, and then the solution is updated to take account of the omitted dense rows. In some practical applications the number of dense rows can be significant and for very large problems, using a direct solver may not be feasible. We propose processing rows that are identified as dense separately within a conjugate gradient method using an incomplete factorization preconditioner combined with the factorization of a dense matrix of size equal to the number of dense rows. Numerical experiments on large-scale problems from real applications are used to illustrate the effectiveness of our approach. The results demonstrate that we can efficiently solve problems that could not be solved by a preconditioned conjugate gradient method without exploiting the dense rows

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration

    Design and implementation of a modular interior-point solver for linear optimization

    Get PDF
    This paper introduces the algorithmic design and implementation of Tulip, an open-source interior-point solver for linear optimization. It implements a regularized homogeneous interior-point algorithm with multiple centrality corrections, and therefore handles unbounded and infeasible problems. The solver is written in Julia, thus allowing for a flexible and efficient implementation: Tulip's algorithmic framework is fully disentangled from linear algebra implementations and from a model's arithmetic. In particular, this allows to seamlessly integrate specialized routines for structured problems. Extensive computational results are reported. We find that Tulip is competitive with open-source interior-point solvers on the H. Mittelmann's benchmark of barrier linear programming solvers. Furthermore, we design specialized linear algebra routines for structured master problems in the context of Dantzig-Wolfe decomposition. These routines yield a tenfold speedup on large and dense instances that arise in power systems operation and two-stage stochastic programming, thereby outperforming state-of-the-art commercial interior point method solvers. Finally, we illustrate Tulip's ability to use different levels of arithmetic precision by solving problems in extended precision
    • …
    corecore