136 research outputs found

    A process calculus approach to correctness enforcement of PLCs

    Get PDF
    We define a simple process calculus, based on Hennessy and Regan\u2019s Timed Process Language, for specifying networks of communicating programmable logic controllers (PLCs) enriched with monitors enforcing specifications compliance. We define a synthesis algorithm that given an uncorrupted PLC returns a monitor that enforces the correctness of the PLC, even when injected with malware that may forge/drop actuator commands and inter-controller communications. Then, we strengthen the capabilities of our monitors by allowing the insertion of actions to mitigate malware activities. This gives us deadlock-freedom monitoring: malware may not drag monitored controllers into deadlock states

    Formal Approaches to Control System Security From Static Analysis to Runtime Enforcement

    Get PDF
    With the advent of Industry 4.0, industrial facilities and critical infrastructures are transforming into an ecosystem of heterogeneous physical and cyber components, such as programmable logic controllers, increasingly interconnected and therefore exposed to cyber-physical attacks, i.e., security breaches in cyberspace that may adversely affect the physical processes underlying industrial control systems. The main contributions of this thesis follow two research strands that address the security concerns of industrial control systems via formal methodologies. As our first contribution, we propose a formal approach based on model checking and statistical model checking, within the MODEST TOOLSET, to analyse the impact of attacks targeting nontrivial control systems equipped with an intrusion detection system (IDS) capable of detecting and mitigating attacks. Our goal is to evaluate the impact of cyber-physical attacks, i.e., attacks targeting sensors and/or actuators of the system with potential consequences on the safety of the inner physical process. Our security analysis estimates both the physical impact of the attacks and the performance of the IDS. As our second contribution, we propose a formal approach based on runtime enforcement to ensure specification compliance in networks of controllers, possibly compromised by colluding malware that may tamper with actuator commands, sensor readings, and inter-controller communications. Our approach relies on an ad-hoc sub-class of Ligatti et al.’s edit automata to enforce controllers represented in Hennessy and Regan’s Timed Process Language. We define a synthesis algorithm that, given an alphabet P of observable actions and a timed correctness property e, returns a monitor that enforces the property e during the execution of any (potentially corrupted) controller with alphabet P, and complying with the property e. Our monitors correct and suppress incorrect actions coming from corrupted controllers and emit actions in full autonomy when the controller under scrutiny is not able to do so in a correct manner. Besides classical requirements, such as transparency and soundness, the proposed enforcement enjoys deadlock- and diverge-freedom of monitored controllers, together with compositionality when dealing with networks of controllers. Finally, we test the proposed enforcement mechanism on a non-trivial case study, taken from the context of industrial water treatment systems, in which the controllers are injected with different malware with different malicious goals

    Formally designing and implementing cyber security mechanisms in industrial control networks.

    Get PDF
    This dissertation describes progress in the state-of-the-art for developing and deploying formally verified cyber security devices in industrial control networks. It begins by detailing the unique struggles that are faced in industrial control networks and why concepts and technologies developed for securing traditional networks might not be appropriate. It uses these unique struggles and examples of contemporary cyber-attacks targeting control systems to argue that progress in securing control systems is best met with formal verification of systems, their specifications, and their security properties. This dissertation then presents a development process and identifies two technologies, TLA+ and seL4, that can be leveraged to produce a high-assurance embedded security device. The method presented in this dissertation takes an informal design of an embedded device that might be found in a control system and 1) formalizes the design within TLA+, 2) creates and mechanically checks a model built from the formal design, and 3) translates the TLA+ design into a component-based architecture of a native seL4 application. The later chapters of this dissertation describe an application of the process to a security preprocessor embedded device that was designed to add security mechanisms to the network communication of an existing control system. The device and its security properties are formally specified in TLA+ in chapter 4, mechanically checked in chapter 5, and finally its native seL4 architecture is implemented in chapter 6. Finally, the conclusions derived from the research are laid out, as well as some possibilities for expanding the presented method in the future

    A Survey of Practical Formal Methods for Security

    Get PDF
    In today's world, critical infrastructure is often controlled by computing systems. This introduces new risks for cyber attacks, which can compromise the security and disrupt the functionality of these systems. It is therefore necessary to build such systems with strong guarantees of resiliency against cyber attacks. One way to achieve this level of assurance is using formal verification, which provides proofs of system compliance with desired cyber security properties. The use of Formal Methods (FM) in aspects of cyber security and safety-critical systems are reviewed in this article. We split FM into the three main classes: theorem proving, model checking, and lightweight FM. To allow the different uses of FM to be compared, we define a common set of terms. We further develop categories based on the type of computing system FM are applied in. Solutions in each class and category are presented, discussed, compared, and summarised. We describe historical highlights and developments and present a state-of-the-art review in the area of FM in cyber security. This review is presented from the point of view of FM practitioners and researchers, commenting on the trends in each of the classes and categories. This is achieved by considering all types of FM, several types of security and safety-critical systems, and by structuring the taxonomy accordingly. The article hence provides a comprehensive overview of FM and techniques available to system designers of security-critical systems, simplifying the process of choosing the right tool for the task. The article concludes by summarising the discussion of the review, focusing on best practices, challenges, general future trends, and directions of research within this field

    Developing theoretical foundations for runtime enforcement

    Get PDF
    The ubiquitous reliance on software systems is increasing the need for ensuring their correctness. Runtime enforcement is a monitoring technique that uses moni- tors that can transform the actions of a system under scrutiny in order to alter its runtime behaviour and keep it in line with a correctness specification; these type of enforcement monitors are often called transducers. In runtime enforcement there is often no clear separation between the specification language describing the cor- rectness criteria that a system must satisfy, and the monitoring mechanism that actually ensures that these criteria are met. We thus aim to adopt a separation of concerns between the correctness specification describing what properties the sys- tem should satisfy, and the monitor describing how to enforce these properties. In this thesis we study the enforceability of the highly expressive branching time logic μHML, in a bid to identify a subset of this logic whose formulas can be adequately enforced by transducers at runtime. We conducted our study in relation to two different enforcement instrumentation settings, namely, a unidirectional setting that is simpler to understand and formalise but limited in the type of system actions it can transform at runtime, and a bidirectional one that, albeit being more complex, it allows transducers to effect and modify a wider set of system actions. During our investigation we define the behaviour of enforcement transducers and how they should be embedded with a system to achieve unidirectional and bidirectional enforcement. We also investigate what it means for a monitor to adequately enforce a logic formula, and define the necessary criteria that a monitor must satisfy in order to be adequate. Since enforcement monitors are highly intrusive, we also define a notion of optimality to use as a guide for identifying the least intrusive monitor that adequately enforces a formula. Using these enforcement definitions, we identify a μHML fragment that can be adequately enforced via enforcement transducers that drop the execution of certain actions. We then show that this fragment is maximally expressive, i.e., it is the largest subset that can be enforced via these type of enforcement monitors. We finally look into static alternatives to runtime enforcement and identify a static analysis technique that can also enforce the identified μHML fragment, but without requiring the system to execute

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language
    corecore