30,587 research outputs found

    The Moment of Inertia and the Scissors Mode of a Bose-condensed Gas

    Full text link
    We relate the frequency of the scissors mode to the moment of inertia of a trapped Bose gas at finite temperature in a semi-classical approximation. We apply these theoretical results to the data obtained in our previous study of the properties of the scissors mode of a trapped Bose-Einstein condensate of 87^{87}Rb atoms as a function of the temperature. The frequency shifts that we measured show quenching of the moment of inertia of the Bose gas at temperatures below the transition temperature - the system has a lower moment of inertia that of a rigid body with the same mass distribution, because of superfluidity.Comment: 14 pages, 5 fig

    Large scale prop-fan structural design study. Volume 1: Initial concepts

    Get PDF
    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2

    Conceptual design of an orbital debris collector

    Get PDF
    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described

    Thermodynamic Properties of the SU(2)f_f Chiral Quark-Loop Soliton

    Get PDF
    We consider a chiral one-loop hedgehog soliton of the bosonized SU(2)f_f Nambu & Jona-Lasinio model which is embedded in a hot medium of constituent quarks. Energy and radius of the soliton are determined in self-consistent mean-field approximation. Quasi-classical corrections to the soliton energy are derived by means of the pushing and cranking approaches. The corresponding inertial parameters are evaluated. It is shown that the inertial mass is equivalent to the total internal energy of the soliton. Corrected nucleon and Δ\Delta isobar masses are calculated in dependence on temperature and density of the medium. As a result of the self-consistently determined internal structure of the soliton the scaling between constituent quark mass, soliton mass and radius is noticeably disturbed.Comment: 34 pages, 7 Postscript figures, uses psfig.st

    Comfort-Centered Design of a Lightweight and Backdrivable Knee Exoskeleton

    Full text link
    This paper presents design principles for comfort-centered wearable robots and their application in a lightweight and backdrivable knee exoskeleton. The mitigation of discomfort is treated as mechanical design and control issues and three solutions are proposed in this paper: 1) a new wearable structure optimizes the strap attachment configuration and suit layout to ameliorate excessive shear forces of conventional wearable structure design; 2) rolling knee joint and double-hinge mechanisms reduce the misalignment in the sagittal and frontal plane, without increasing the mechanical complexity and inertia, respectively; 3) a low impedance mechanical transmission reduces the reflected inertia and damping of the actuator to human, thus the exoskeleton is highly-backdrivable. Kinematic simulations demonstrate that misalignment between the robot joint and knee joint can be reduced by 74% at maximum knee flexion. In experiments, the exoskeleton in the unpowered mode exhibits 1.03 Nm root mean square (RMS) low resistive torque. The torque control experiments demonstrate 0.31 Nm RMS torque tracking error in three human subjects.Comment: 8 pages, 16figures, Journa

    Analysis of rotor vibratory loads using higher harmonic pitch control

    Get PDF
    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code

    The WaveGyro

    Get PDF
    The WaveGyro – A new Concept for Ocean Wave Energy Capture (Master Thesis by Gebhard Waizmann, University of Southampton 22.09.2011) Abstract Climate change, environmental pollution and the proceeding resource depletion give awareness of the necessity towards more sustainable energy economics. Energy from ocean waves may once play a contributing role towards this step but is as yet in its fledgling stages. This is mainly due to the harsh sea environment, which implies the need for simple and robust wave energy converter. The work presented in this thesis picks up this thought when dealing with the so-called WaveGyro. Introductory chapters explain how this novel concept arose, followed by a detailed explanation of the working principle. The WavGyro utilizes gyroscopes to provide an internal reaction moment against the wave excitation. This internal reaction permits designing a completely enclosed and thus environmentally resistant device. The gyroscopic precession is used to convert the wave-induced moment into a moment that accelerates the flywheels. Equations of motion, which describe the gyroscope kinetics, are deduced. The gyroscopic motions and moment is then implemented into the first-order wave hydrodynamics. Two main approaches to describe the wave excitation are presented. The first approach is superposition of radiation and exci-tation and the second approach makes use of the relative motion principle, which relates the excitation to the extent of displacement. Both approaches are employed to deduce the maximum power capture condition in relation to the device’s dimensions and operational parameters. The influence of real sea state, analytically expressed by the Pierson-Moskowitz spec-trum, on the optimum power analysis is considered and implementation methods are de-veloped. Subsequently the spin-up mechanism is explained and examined; this is the mechanism converting the precession moment into torque accelerating the flywheel. It is shown that a simple configuration, composed of an ordinary cogwheel and a sprag-clutch only is not sufficient for this mechanism. Ideas for alternative mechanisms are considered but require further investigation to allow conclusive results. Finally, an approximate plan for the design of model is developed, which includes basic considerations of scaling laws. Recommendations for further theoretical and practical work on the WaveGyro are provided

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    Get PDF
    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented
    corecore