371 research outputs found

    An Experimental program animation system

    Get PDF
    Bibliography: p. 97-100

    Standardized development of computer software. Part 2: Standards

    Get PDF
    This monograph contains standards for software development and engineering. The book sets forth rules for design, specification, coding, testing, documentation, and quality assurance audits of software; it also contains detailed outlines for the documentation to be produced

    Timing model derivation : static analysis of hardware description languages

    Get PDF
    Safety-critical hard real-time systems are subject to strict timing constraints. In order to derive guarantees on the timing behavior, the worst-case execution time (WCET) of each task comprising the system has to be known. The aiT tool has been developed for computing safe upper bounds on the WCET of a task. Its computation is mainly based on abstract interpretation of timing models of the processor and its periphery. These models are currently hand-crafted by human experts, which is a time-consuming and error-prone process. Modern processors are automatically synthesized from formal hardware specifications. Besides the processor’s functional behavior, also timing aspects are included in these descriptions. A methodology to derive sound timing models using hardware specifications is described within this thesis. To ease the process of timing model derivation, the methodology is embedded into a sound framework. A key part of this framework are static analyses on hardware specifications. This thesis presents an analysis framework that is build on the theory of abstract interpretation allowing use of classical program analyses on hardware description languages. Its suitability to automate parts of the derivation methodology is shown by different analyses. Practical experiments demonstrate the applicability of the approach to derive timing models. Also the soundness of the analyses and the analyses’ results is proved.Sicherheitskritische Echtzeitsysteme unterliegen strikten Zeitanforderungen. Um ihr Zeitverhalten zu garantieren müssen die Ausführungszeiten der einzelnen Programme, die das System bilden, bekannt sein. Um sichere obere Schranken für die Ausführungszeit von Programmen zu berechnen wurde aiT entwickelt. Die Berechnung basiert auf abstrakter Interpretation von Zeitmodellen des Prozessors und seiner Peripherie. Diese Modelle werden händisch in einem zeitaufwendigen und fehleranfälligen Prozess von Experten entwickelt. Moderne Prozessoren werden automatisch aus formalen Spezifikationen erzeugt. Neben dem funktionalen Verhalten beschreiben diese auch das Zeitverhalten des Prozessors. In dieser Arbeit wird eine Methodik zur sicheren Ableitung von Zeitmodellen aus der Hardwarespezifikation beschrieben. Um den Ableitungsprozess zu vereinfachen ist diese Methodik in eine automatisierte Umgebung eingebettet. Ein Hauptbestandteil dieses Systems sind statische Analysen auf Hardwarebeschreibungen. Diese Arbeit stellt eine Analyse-Umgebung vor, die auf der Theorie der abstrakten Interpretation aufbaut und den Einsatz von klassischen Programmanalysen auf Hardwarebeschreibungssprachen erlaubt. Die Eignung des Systems, Teile der Ableitungsmethodik zu automatisieren, wird anhand einiger Analysen gezeigt. Experimentelle Ergebnisse zeigen die Anwendbarkeit der Methodik zur Ableitung von Zeitmodellen. Die Korrektheit der Analysen und der Analyse-Ergebnisse wird ebenfalls bewiesen

    Improving Nurse-to-Nurse Handoff Communication at the Bedside through Simulation-Based

    Get PDF
    Communication among nursing staff is crucial to the outcome of patient care. Poor handoff and communication among professionals can have a negative impact on the safety of patients. The systemic nature of the problem with miscommunication among healthcare clinicians supports the necessity of standardization of communication among nursing as a handoff of care. Change of shift report, or nurse-to-nurse report ensures the transfer of critical information to promote patient safety and best practices. Transferring and communicating pertinent information from one shift to the next is one factor in providing continuity of care. Bedside Shift Report (BSR) is an opportunity to reduce errors and ensure communication among nurses. Many benefits for BSR include relationship building among staff, visualization of the patient, increased patient satisfaction, and patient safety. Benefits of BSR include, changing current culture of nurse-to-nurse handoff to the patient’s bedside requires nursing leaders to utilize transformational leadership throughout the process. Evidence supports a practice change in nurse-to-nurse handoff using simulation in the hospital environment. This DNP project established BSR competency through simulation training. Registered nursing staff demonstrated nurse-to-nurse handoff communication through simulation competency training after didactic education. Outcomes measures included, improving nursing communication shown by communication with nurses scores through HCAHPS scores. A post simulation evaluation tool was completed by each participant evaluating the experience. Ultimately, the DNP project promotes simulation for education on nurse to nurse handoff competency

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included

    Visualizing Provenance In A Supply chain Using Ethereum Blockchain

    Get PDF
    Visualization is a widely used in different fields of studies such as supply chain management when there is a need to communicate information to general users. However, there are multiple limitations and problems with visualizing information within traditional systems. In traditional systems, data is in control of one single authority; so data is mutable and there is no guarantee that system administer does not change the data to achieve a desired result. Besides, such systems are not transparent and users do not have any access to the data flow. In this thesis, the main goal was to visualize information that has been saved on top of a new technology named blockchain to overcome the aforementioned problems. All the records in the system are saved on the blockchain and data is pulled out from blockchain to be used in visualization. To have a better insight, a review has been done on relevant studies about blockchain, supply chain and visualization. After identifying the gap in literature review, an architecture was proposed that was used in the implementation. The implementation contains, a system on top of ethereum blockchain and front-end which allows users to interact with the system. In the system, all the information about products and all the transactions that ever happened in the system, are recorded on the blockchain. Then, data was retrieved from the blockchain and used to visualize provenance of products on Google Map API. After implementing the system, the performance was evaluated to make sure that it can handle different situations where various number of clients sending request to the system simultaneously. The performance was as expected in which system responds longer when number of clients sending requests were growing. The proposed solution fill the gap that was identified in the literature review. By adding provenance visualization users can explore previous owners and locations of a product in a trustable manner. Future research can focus on analysis of data which will allow organizations to make informed decisions on choosing popular products to sell

    Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers

    Get PDF
    A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl

    Prefrontal rhythms for cognitive control

    Get PDF
    Goal-directed behavior requires flexible selection among action plans and updating behavioral strategies when they fail to achieve desired goals. Lateral prefrontal cortex (LPFC) is implicated in the execution of behavior-guiding rule-based cognitive control while anterior cingulate cortex (ACC) is implicated in monitoring processes and updating rules. Rule-based cognitive control requires selective processing while process monitoring benefits from combinatorial processing. I used a combination of computational and experimental methods to investigate how network oscillations and neuronal heterogeneity contribute to cognitive control through their effects on selective versus combinatorial processing modes in LPFC and ACC. First, I adapted an existing LPFC model to explore input frequency- and coherence-based output selection mechanisms for flexible routing of rate-coded signals. I show that the oscillatory states of input encoding populations can exhibit a stronger influence over downstream competition than their activity levels. This enables an output driven by a weaker resonant input signal to suppress lower-frequency competing responses to stronger, less resonant (though possibly higher-frequency) input signals. While signals are encoded in population firing rates, output selection and signal routing can be governed independently by the frequency and coherence of oscillatory inputs and their correspondence with output resonant properties. Flexible response selection and gating can be achieved by oscillatory state control mechanisms operating on input encoding populations. These dynamic mechanisms enable experimentally-observed LPFC beta and gamma oscillations to flexibly govern the selection and gating of rate-coded signals for downstream read-out. Furthermore, I demonstrate how differential drives to distinct interneuron populations can switch working memory representations between asynchronous and oscillatory states that support rule-based selection. Next, I analyzed physiological data from the LeBeau laboratory and built a de novo model constrained by the biological data. Experimental data demonstrated that fast network oscillations at both the beta- and gamma frequency bands could be elicited in vitro in ACC and neurons exhibited a wide range of intrinsic properties. Computational modeling of the ACC network revealed that the frequency of network oscillation generated was dependent upon the time course of inhibition. Principal cell heterogeneity broadened the range of frequencies generated by the model network. In addition, with different frequency inputs to two neuronal assemblies, heterogeneity decreased competition and increased spike coherence between the networks thus conferring a combinatorial advantage to the network. These findings suggest that oscillating neuronal populations can support either response selection (routing), or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances. Such differences may support functional differences between the roles of LPFC and ACC in cognitive control
    • …
    corecore