1,080 research outputs found

    TT2NE: A novel algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present TT2NE, a new algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. TT2NE guarantees to find the minimum free energy structure irrespectively of pseudoknot topology. This unique proficiency is obtained at the expense of the maximum length of sequence that can be treated but comparison with state-of-the-art algorithms shows that TT2NE is a very powerful tool within its limits. Analysis of TT2NE's wrong predictions sheds light on the need to study how sterical constraints limit the range of pseudoknotted structures that can be formed from a given sequence. An implementation of TT2NE on a public server can be found at http://ipht.cea.fr/rna/tt2ne.php

    Improved RNA pseudoknots prediction and classification using a new topological invariant

    Get PDF
    We propose a new topological characterization of RNA secondary structures with pseudoknots based on two topological invariants. Starting from the classic arc-representation of RNA secondary structures, we consider a model that couples both I) the topological genus of the graph and II) the number of crossing arcs of the corresponding primitive graph. We add a term proportional to these topological invariants to the standard free energy of the RNA molecule, thus obtaining a novel free energy parametrization which takes into account the abundance of topologies of RNA pseudoknots observed in RNA databases.Comment: 9 pages, 6 figure

    McGenus: A Monte Carlo algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifically, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php .Comment: 6 pages, 1 figur

    Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations

    Full text link
    Ab initio RNA secondary structure predictions have long dismissed helices interior to loops, so-called pseudoknots, despite their structural importance. Here, we report that many pseudoknots can be predicted through long time scales RNA folding simulations, which follow the stochastic closing and opening of individual RNA helices. The numerical efficacy of these stochastic simulations relies on an O(n^2) clustering algorithm which computes time averages over a continously updated set of n reference structures. Applying this exact stochastic clustering approach, we typically obtain a 5- to 100-fold simulation speed-up for RNA sequences up to 400 bases, while the effective acceleration can be as high as 100,000-fold for short multistable molecules (<150 bases). We performed extensive folding statistics on random and natural RNA sequences, and found that pseudoknots are unevenly distributed amongst RNAstructures and account for up to 30% of base pairs in G+C rich RNA sequences (Online RNA folding kinetics server including pseudoknots : http://kinefold.u-strasbg.fr/ ).Comment: 6 pages, 5 figure

    Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension

    Full text link
    Because of the potential link between -1 programmed ribosomal frameshifting and response of a pseudoknot (PK) RNA to force, a number of single molecule pulling experiments have been performed on PKs to decipher the mechanism of programmed ribosomal frameshifting. Motivated in part by these experiments, we performed simulations using a coarse-grained model of RNA to describe the response of a PK over a range of mechanical forces (ffs) and monovalent salt concentrations (CCs). The coarse-grained simulations quantitatively reproduce the multistep thermal melting observed in experiments, thus validating our model. The free energy changes obtained in simulations are in excellent agreement with experiments. By varying ff and CC, we calculated the phase diagram that shows a sequence of structural transitions, populating distinct intermediate states. As ff and CC are changed, the stem-loop tertiary interactions rupture first, followed by unfolding of the 33^{\prime}-end hairpin (IF\textrm{I}\rightleftharpoons\textrm{F}). Finally, the 55^{\prime}-end hairpin unravels, producing an extended state (EI\textrm{E}\rightleftharpoons\textrm{I}). A theoretical analysis of the phase boundaries shows that the critical force for rupture scales as (logCm)α\left(\log C_{\textrm{m}}\right)^{\alpha} with α=1(0.5)\alpha=1\,(0.5) for EI\textrm{E}\rightleftharpoons\textrm{I} (IF\textrm{I}\rightleftharpoons\textrm{F}) transition. This relation is used to obtain the preferential ion-RNA interaction coefficient, which can be quantitatively measured in single-molecule experiments, as done previously for DNA hairpins. A by-product of our work is the suggestion that the frameshift efficiency is likely determined by the stability of the 55^{\prime}-end hairpin that the ribosome first encounters during translation.Comment: Final draft accepted in Journal of Molecular Biology, 16 pages including Supporting Informatio
    corecore