52,062 research outputs found

    Symmetric Neural Nets and Propositional Logic Satisfiability

    Get PDF
    Connectionist networks with symmetric weights (like Hopfield networks and Boltman Machines) use gradient descent to find a minimum for quadratic energy functions. We show an equivalence between the problem of satisfiability in propositional calculus and the problem of minimizing those energy functions. The equivalence is in the sense that for an satisfiable Well Formed Formula (WFF) we can find a quadratic function that describes it, such that the set of solutions that minimize the function is equal to the set of truth assignments that satisfy the WFF. We also show that in the same sense every quadratic energy function describes some satisfiable WFF. Algorithms are given to transform any propositional WFF into an energy function that describes it and vice versa. High-order models that use Sigma-Pi units are shown to be equivalent to the standard quadratic models with additional hidden units. An algorithm to convert high-order networks to low-order ones is used to implement a satisfiability problem-solver on a connectionist network. The results give better understanding of the role of hidden units and of the limitations and capabilities of symmetric connectionist models. The techniques developed for the satisfiability problem may be applied to a wide range of other problems, such as: associative memories, finding maximal consistent subsets, automatic deduction and even non-monotonic reasoning

    OSQP: An Operator Splitting Solver for Quadratic Programs

    Full text link
    We present a general-purpose solver for convex quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix at almost every iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It can be configured to be division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior-point methods, and sometimes much more when factorization caching or warm start is used. OSQP has already shown a large impact with tens of thousands of users both in academia and in large corporations

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data

    Computationally Efficient Trajectory Optimization for Linear Control Systems with Input and State Constraints

    Full text link
    This paper presents a trajectory generation method that optimizes a quadratic cost functional with respect to linear system dynamics and to linear input and state constraints. The method is based on continuous-time flatness-based trajectory generation, and the outputs are parameterized using a polynomial basis. A method to parameterize the constraints is introduced using a result on polynomial nonpositivity. The resulting parameterized problem remains linear-quadratic and can be solved using quadratic programming. The problem can be further simplified to a linear programming problem by linearization around the unconstrained optimum. The method promises to be computationally efficient for constrained systems with a high optimization horizon. As application, a predictive torque controller for a permanent magnet synchronous motor which is based on real-time optimization is presented.Comment: Proceedings of the American Control Conference (ACC), pp. 1904-1909, San Francisco, USA, June 29 - July 1, 201
    • …
    corecore