20,695 research outputs found

    Online Influence Maximization (Extended Version)

    Full text link
    Social networks are commonly used for marketing purposes. For example, free samples of a product can be given to a few influential social network users (or "seed nodes"), with the hope that they will convince their friends to buy it. One way to formalize marketers' objective is through influence maximization (or IM), whose goal is to find the best seed nodes to activate under a fixed budget, so that the number of people who get influenced in the end is maximized. Recent solutions to IM rely on the influence probability that a user influences another one. However, this probability information may be unavailable or incomplete. In this paper, we study IM in the absence of complete information on influence probability. We call this problem Online Influence Maximization (OIM) since we learn influence probabilities at the same time we run influence campaigns. To solve OIM, we propose a multiple-trial approach, where (1) some seed nodes are selected based on existing influence information; (2) an influence campaign is started with these seed nodes; and (3) users' feedback is used to update influence information. We adopt the Explore-Exploit strategy, which can select seed nodes using either the current influence probability estimation (exploit), or the confidence bound on the estimation (explore). Any existing IM algorithm can be used in this framework. We also develop an incremental algorithm that can significantly reduce the overhead of handling users' feedback information. Our experiments show that our solution is more effective than traditional IM methods on the partial information.Comment: 13 pages. To appear in KDD 2015. Extended versio

    Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

    Full text link
    A topic propagating in a social network reaches its tipping point if the number of users discussing it in the network exceeds a critical threshold such that a wide cascade on the topic is likely to occur. In this paper, we consider the task of selecting initial seed users of a topic with minimum size so that with a guaranteed probability the number of users discussing the topic would reach a given threshold. We formulate the task as an optimization problem called seed minimization with probabilistic coverage guarantee (SM-PCG). This problem departs from the previous studies on social influence maximization or seed minimization because it considers influence coverage with probabilistic guarantees instead of guarantees on expected influence coverage. We show that the problem is not submodular, and thus is harder than previously studied problems based on submodular function optimization. We provide an approximation algorithm and show that it approximates the optimal solution with both a multiplicative ratio and an additive error. The multiplicative ratio is tight while the additive error would be small if influence coverage distributions of certain seed sets are well concentrated. For one-way bipartite graphs we analytically prove the concentration condition and obtain an approximation algorithm with an O(logn)O(\log n) multiplicative ratio and an O(n)O(\sqrt{n}) additive error, where nn is the total number of nodes in the social graph. Moreover, we empirically verify the concentration condition in real-world networks and experimentally demonstrate the effectiveness of our proposed algorithm comparing to commonly adopted benchmark algorithms.Comment: Conference version will appear in KDD 201

    Stability of Influence Maximization

    Full text link
    The present article serves as an erratum to our paper of the same title, which was presented and published in the KDD 2014 conference. In that article, we claimed falsely that the objective function defined in Section 1.4 is non-monotone submodular. We are deeply indebted to Debmalya Mandal, Jean Pouget-Abadie and Yaron Singer for bringing to our attention a counter-example to that claim. Subsequent to becoming aware of the counter-example, we have shown that the objective function is in fact NP-hard to approximate to within a factor of O(n1ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon > 0. In an attempt to fix the record, the present article combines the problem motivation, models, and experimental results sections from the original incorrect article with the new hardness result. We would like readers to only cite and use this version (which will remain an unpublished note) instead of the incorrect conference version.Comment: Erratum of Paper "Stability of Influence Maximization" which was presented and published in the KDD1
    corecore