3,926 research outputs found

    Probabilistic models for protein conformational changes

    Get PDF
    Proteins are macromolecules that perform multiple functions. They are not rigid molecules, but instead proteins can change their conformation to perform critical tasks driven by binding small ligands, by assembling into large macromolecular complexes or by physiological factors. Characterization of protein conformational change and analyzing transitional pathways along protein conformational states are essentially tasks for computational biology. Here we propose probabilistic models to characterize protein conformational change. The first model disentangles protein structure into rigid bodies, whereas the second model proposes the probabilistic network model for the transitions between conformational states. Our first model is a generative process using Gaussian mixture models to represent rigid domains, which generated the input structures through spatial transformation. To estimate our model parameters, we use two approaches: using deterministic Expectation- Maximization algorithm and stochastic Gibbs sampler. The second model is an elastic way to expand the application spectrum of our model. The model uses anharmonic springs that involve the molecular distances that are allowed to break in a stochastic fashion. The function of the spring potential is inferred from a statistical analysis of a database of large-scale conformational changes in proteins. In addition we deploy our model in a webservice, as well as we deposit a precomputed dataset of rigid domains and a selective dataset of conformational pathway between conformational states. Finally, we employ graph-based algorithms to solve the problem of a model-free base solution. This work is not limited to biological applications, but can also be applied to robotics and computer vision. This thesis is based on the following publications and manuscripts, respectively: • Thach Nguyen, Michael Habeck, A probabilistic model for detecting rigid domains in protein structures, Bioinformatics, Volume 32, Issue 17, 1 September 2016, Pages i710–i717, https://doi.org/10.1093/bioinformatics/btw442 • Habeck M, Nguyen T. A probabilistic network model for structural transitions in biomolecules.Proteins. 2018;86:634–643.https://doi.org/10.1002/prot.25490 • Linh Dang, Thach Nguyen, Michael Habeck, and StephanWaack. A graph-based algorithm for detecting rigid domains in protein structures. Submitted • Thach Nguyen, Christian Böhm, Michael Habeck, A computational web server for segmenting protein structure into rigid bodies, in preparation

    Rigidity and flexibility of biological networks

    Full text link
    The network approach became a widely used tool to understand the behaviour of complex systems in the last decade. We start from a short description of structural rigidity theory. A detailed account on the combinatorial rigidity analysis of protein structures, as well as local flexibility measures of proteins and their applications in explaining allostery and thermostability is given. We also briefly discuss the network aspects of cytoskeletal tensegrity. Finally, we show the importance of the balance between functional flexibility and rigidity in protein-protein interaction, metabolic, gene regulatory and neuronal networks. Our summary raises the possibility that the concepts of flexibility and rigidity can be generalized to all networks.Comment: 21 pages, 4 figures, 1 tabl

    Rapid Sampling of Molecular Motions with Prior Information Constraints

    Get PDF
    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion

    Inferring Protein-Protein Interactions (PPIs) Based on Computational Methods

    Get PDF

    Efficient comprehensive scoring of docked proteincomplexes - a machine learning approach

    Get PDF
    Biological systems and processes rely on a complex network of molecular interactions. The association of biological macromolecules is a fundamental biochemical phenomenon and an unsolved theoretical problem crucial for the understanding of complex living systems. The term protein-protein docking describes the computational prediction of the assembly of protein complexes from the individual subunits. Docking algorithms generally produce a large number of putative protein complexes. In most cases, some of these conformations resemble the native complex structure within an acceptable degree of structural similarity. A major challenge in the field of docking is to extract the near-native structure(s) out of this considerably large pool of solutions, the so called scoring or ranking problem. It has been the aim of this work to develop methods for the efficient and accurate detection of near-native conformations in the scoring or ranking process of docked protein-protein complexes. A series of structural, chemical, biological and physical properties are used in this work to score docked protein-protein complexes. These properties include specialised energy functions, evolutionary relationship, class specific residue interface propensities, gap volume, buried surface area, empiric pair potentials on residue and atom level as well as measures for the tightness of fit. Efficient comprehensive scoring functions have been developed using probabilistic Support Vector Machines in combination with this array of properties on the largest currently available protein-protein docking benchmark. The established scoring functions are shown to be specific for certain types of protein-protein complexes and are able to detect near-native complex conformations from large sets of decoys with high sensitivity. The specific complex classes are Enzyme-Inhibitor/Substrate complexes, Antibody-Antigen complexes and a third class denoted as "Other" complexes which holds all test cases not belonging to either of the two previous classes. The three complex class specific scoring functions were tested on the docking results of 99 complexes in their unbound form for the above mentioned categories. Defining success as scoring a 'true' result with a p-value of better than 0.1, the scoring schemes were found to be successful in 93%, 78% and 63% of the examined cases, respectively. The ranking of near-native structures can be drastically improved, leading to a significant enrichment of near-native complex conformations in the top ranks. It could be shown that the developed scoring schemes outperform five other previously published scoring functions

    A Constraint Solver for Flexible Protein Models

    Get PDF
    This paper proposes the formalization and implementation of a novel class of constraints aimed at modeling problems related to placement of multi-body systems in the 3-dimensional space. Each multi-body is a system composed of body elements, connected by joint relationships and constrained by geometric properties. The emphasis of this investigation is the use of multi-body systems to model native conformations of protein structures---where each body represents an entity of the protein (e.g., an amino acid, a small peptide) and the geometric constraints are related to the spatial properties of the composing atoms. The paper explores the use of the proposed class of constraints to support a variety of different structural analysis of proteins, such as loop modeling and structure prediction. The declarative nature of a constraint-based encoding provides elaboration tolerance and the ability to make use of any additional knowledge in the analysis studies. The filtering capabilities of the proposed constraints also allow to control the number of representative solutions that are withdrawn from the conformational space of the protein, by means of criteria driven by uniform distribution sampling principles. In this scenario it is possible to select the desired degree of precision and/or number of solutions. The filtering component automatically excludes configurations that violate the spatial and geometric properties of the composing multi-body system. The paper illustrates the implementation of a constraint solver based on the multi-body perspective and its empirical evaluation on protein structure analysis problems

    Insights into mechanism kinematics for protein motion simulation

    Get PDF
    Background: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. Results: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. Conclusions: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.The authors wish to acknowledge the financial support received from the Spanish Government through the Ministerio de Economia y Competitividad (Project DPI2011-22955), the Regional Government of the Basque Country through the Departamento de Educacion, Universidades e Investigacion (Project IT445-10) and UPV/EHU under program UFI 11/29 and by Grants from the Department of Education, Universities and Research of the Basque Government (PI2010-17), from the Department of Industry of the Basque Government (ETORTEK Program IE05-147 and IE07-202), from the Bizkaia Country (Exp. 7/13/08/2006/11 and 7/13/08/2005/14), and from the Spanish Ministry of Economy and Innovation (BFU2010-17857 and SICI-CONSOLIDER Program CSD2008-00005) (all to L.A.M.-C.)

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl
    • …
    corecore