14,510 research outputs found

    A probabilistic framework for multi-view feature learning with many-to-many associations via neural networks

    Full text link
    A simple framework Probabilistic Multi-view Graph Embedding (PMvGE) is proposed for multi-view feature learning with many-to-many associations so that it generalizes various existing multi-view methods. PMvGE is a probabilistic model for predicting new associations via graph embedding of the nodes of data vectors with links of their associations. Multi-view data vectors with many-to-many associations are transformed by neural networks to feature vectors in a shared space, and the probability of new association between two data vectors is modeled by the inner product of their feature vectors. While existing multi-view feature learning techniques can treat only either of many-to-many association or non-linear transformation, PMvGE can treat both simultaneously. By combining Mercer's theorem and the universal approximation theorem, we prove that PMvGE learns a wide class of similarity measures across views. Our likelihood-based estimator enables efficient computation of non-linear transformations of data vectors in large-scale datasets by minibatch SGD, and numerical experiments illustrate that PMvGE outperforms existing multi-view methods.Comment: 16 pages (with Supplementary Material), 5 figures, ICML201

    Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

    Full text link
    Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate \textit{induction of explainable rules from knowledge graph} with \textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experiments\footnote{Code and data can be found at: \url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over "noisy" item knowledge graphs, generated by linking item names to related entities.Comment: 10 pages, plus 1-page references; accepted at The Web Conference 201

    DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features

    Full text link
    As the foundation of driverless vehicle and intelligent robots, Simultaneous Localization and Mapping(SLAM) has attracted much attention these days. However, non-geometric modules of traditional SLAM algorithms are limited by data association tasks and have become a bottleneck preventing the development of SLAM. To deal with such problems, many researchers seek to Deep Learning for help. But most of these studies are limited to virtual datasets or specific environments, and even sacrifice efficiency for accuracy. Thus, they are not practical enough. We propose DF-SLAM system that uses deep local feature descriptors obtained by the neural network as a substitute for traditional hand-made features. Experimental results demonstrate its improvements in efficiency and stability. DF-SLAM outperforms popular traditional SLAM systems in various scenes, including challenging scenes with intense illumination changes. Its versatility and mobility fit well into the need for exploring new environments. Since we adopt a shallow network to extract local descriptors and remain others the same as original SLAM systems, our DF-SLAM can still run in real-time on GPU

    Algorithmic clothing: hybrid recommendation, from street-style-to-shop

    Full text link
    In this paper we detail Cortexica's (https://www.cortexica.com) recommendation framework -- particularly, we describe how a hybrid visual recommender system can be created by combining conditional random fields for segmentation and deep neural networks for object localisation and feature representation. The recommendation system that is built after localisation, segmentation and classification has two properties -- first, it is knowledge based in the sense that it learns pairwise preference/occurrence matrix by utilising knowledge from experts (images from fashion blogs) and second, it is content-based as it utilises a deep learning based framework for learning feature representation. Such a construct is especially useful when there is a scarcity of user preference data, that forms the foundation of many collaborative recommendation algorithms.Comment: KDD 2017 Workshop on ML meets Fashio

    Representation Learning for Dynamic Graphs: A Survey

    Full text link
    Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research.Comment: Accepted at JMLR, 73 pages, 2 figure

    Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

    Full text link
    The study and understanding of human behaviour is relevant to computer science, artificial intelligence, neural computation, cognitive science, philosophy, psychology, and several other areas. Presupposing cognition as basis of behaviour, among the most prominent tools in the modelling of behaviour are computational-logic systems, connectionist models of cognition, and models of uncertainty. Recent studies in cognitive science, artificial intelligence, and psychology have produced a number of cognitive models of reasoning, learning, and language that are underpinned by computation. In addition, efforts in computer science research have led to the development of cognitive computational systems integrating machine learning and automated reasoning. Such systems have shown promise in a range of applications, including computational biology, fault diagnosis, training and assessment in simulators, and software verification. This joint survey reviews the personal ideas and views of several researchers on neural-symbolic learning and reasoning. The article is organised in three parts: Firstly, we frame the scope and goals of neural-symbolic computation and have a look at the theoretical foundations. We then proceed to describe the realisations of neural-symbolic computation, systems, and applications. Finally we present the challenges facing the area and avenues for further research.Comment: 58 pages, work in progres

    A Survey on Content-Aware Video Analysis for Sports

    Full text link
    Sports data analysis is becoming increasingly large-scale, diversified, and shared, but difficulty persists in rapidly accessing the most crucial information. Previous surveys have focused on the methodologies of sports video analysis from the spatiotemporal viewpoint instead of a content-based viewpoint, and few of these studies have considered semantics. This study develops a deeper interpretation of content-aware sports video analysis by examining the insight offered by research into the structure of content under different scenarios. On the basis of this insight, we provide an overview of the themes particularly relevant to the research on content-aware systems for broadcast sports. Specifically, we focus on the video content analysis techniques applied in sportscasts over the past decade from the perspectives of fundamentals and general review, a content hierarchical model, and trends and challenges. Content-aware analysis methods are discussed with respect to object-, event-, and context-oriented groups. In each group, the gap between sensation and content excitement must be bridged using proper strategies. In this regard, a content-aware approach is required to determine user demands. Finally, the paper summarizes the future trends and challenges for sports video analysis. We believe that our findings can advance the field of research on content-aware video analysis for broadcast sports.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities

    Full text link
    New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include a myriad of properties describing genome, epigenome, transcriptome, microbiome, phenotype, and lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and computational approaches. The key challenge in developing such approaches is the identification of effective models to provide a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this Review, we describe the principles of data integration and discuss current methods and available implementations. We provide examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative methods and our perspective on the future development of the field

    The SP theory of intelligence: distinctive features and advantages

    Full text link
    This paper highlights distinctive features of the "SP theory of intelligence" and its apparent advantages compared with some AI-related alternatives. Distinctive features and advantages are: simplification and integration of observations and concepts; simplification and integration of structures and processes in computing systems; the theory is itself a theory of computing; it can be the basis for new architectures for computers; information compression via the matching and unification of patterns and, more specifically, via multiple alignment, is fundamental; transparency in the representation and processing of knowledge; the discovery of 'natural' structures via information compression (DONSVIC); interpretations of mathematics; interpretations in human perception and cognition; and realisation of abstract concepts in terms of neurons and their inter-connections ("SP-neural"). These things relate to AI-related alternatives: minimum length encoding and related concepts; deep learning in neural networks; unified theories of cognition and related research; universal search; Bayesian networks and more; pattern recognition and vision; the analysis, production, and translation of natural language; Unsupervised learning of natural language; exact and inexact forms of reasoning; representation and processing of diverse forms of knowledge; IBM's Watson; software engineering; solving problems associated with big data, and in the development of intelligence in autonomous robots. In conclusion, the SP system can provide a firm foundation for the long-term development of AI, with many potential benefits and applications. It may also deliver useful results on relatively short timescales. A high-parallel, open-source version of the SP machine, derived from the SP computer model, would be a means for researchers everywhere to explore what can be done with the system, and to create new versions of it

    Graph Embedding with Shifted Inner Product Similarity and Its Improved Approximation Capability

    Full text link
    We propose shifted inner-product similarity (SIPS), which is a novel yet very simple extension of the ordinary inner-product similarity (IPS) for neural-network based graph embedding (GE). In contrast to IPS, that is limited to approximating positive-definite (PD) similarities, SIPS goes beyond the limitation by introducing bias terms in IPS; we theoretically prove that SIPS is capable of approximating not only PD but also conditionally PD (CPD) similarities with many examples such as cosine similarity, negative Poincare distance and negative Wasserstein distance. Since SIPS with sufficiently large neural networks learns a variety of similarities, SIPS alleviates the need for configuring the similarity function of GE. Approximation error rate is also evaluated, and experiments on two real-world datasets demonstrate that graph embedding using SIPS indeed outperforms existing methods.Comment: 20 pages (with Supplementary Material), 2 figures, AISTATS2019. arXiv admin note: text overlap with arXiv:1805.1233
    corecore