7,851 research outputs found

    A probabilistic demand side management approach by consumption admission control

    Get PDF
    Nova generacija električne mreže pod nazivom pametna mreža (Smart Grid) je nedavno zamišljena vizija čišćeg, učinkovitijeg i jeftinijeg elektroenergetskog sustava. Jedan od najvećih izazova električne mreže je da bi proizvodnja i potrošnja trebale biti uravnotežene u svakome trenutku. U radu se uvodi novi koncept za kontrolu potrošnje sredstvima automatski omogućavanih/onemogućavanih električnih aparata kako bi bili sigurni da je potrošnja usklađena s raspoloživim zalihama, na temelju statističkih karakterizacija potreba. U našem novom pristupu, umjesto uporabe tvrdih granica procjenjujemo vjerojatnost kraja distribucije potrošnje i sustava kontrole pomoću načela i rezultata statističkog upravljanja resursima.New generation electricity network called Smart Grid is a recently conceived vision for a cleaner, more efficient and cheaper electricity system. One of the major challenges of electricity network is that generation and consumption should be balanced at every moment. This paper introduces a new concept for controlling the demand side by the means of automatically enabling/disabling electric appliances to make sure that the demand is in match with the available supplies, based on the statistical characterization of the need. In our new approach instead of using hard limits we estimate the tail probability of the demand distribution and control system by using the principles and the results of statistical resource management

    Smart plugs: A low cost solution for programmable control of domestic loads

    Get PDF
    Balancing energy demand and production is becoming a more and more challenging task for energy utilities. This is due to a number of different reasons among which the larger penetration of renewable energies which are more difficult to predict and the meagre availability of financial resources to upgrade the existing power grid. While the traditional solution is to dynamically adapt energy production to follow the time-varying demand, a new trend is to drive the demand itself by means of Direct Load Control (DLC). In this paper we consider a scenario where DLC functionalities are deployed at a large set of small deferrable energy loads, like appliances of residential users. The required additional intelligence and communication capabilities may be introduced through smart plugs, without the need to replace older 'dumb' appliances. Smart plugs are inserted between the appliances plugs and the power sockets and directly connected to the Internet. An open software architecture allows to abstract the hardware sensors and actuators integrated in the plug and to easily program different load control applications

    DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling

    Full text link
    The dynamic provisioning of virtualized resources offered by cloud computing infrastructures allows applications deployed in a cloud environment to automatically increase and decrease the amount of used resources. This capability is called auto-scaling and its main purpose is to automatically adjust the scale of the system that is running the application to satisfy the varying workload with minimum resource utilization. The need for auto-scaling is particularly important during workload peaks, in which applications may need to scale up to extremely large-scale systems. Both the research community and the main cloud providers have already developed auto-scaling solutions. However, most research solutions are centralized and not suitable for managing large-scale systems, moreover cloud providers' solutions are bound to the limitations of a specific provider in terms of resource prices, availability, reliability, and connectivity. In this paper we propose DEPAS, a decentralized probabilistic auto-scaling algorithm integrated into a P2P architecture that is cloud provider independent, thus allowing the auto-scaling of services over multiple cloud infrastructures at the same time. Our simulations, which are based on real service traces, show that our approach is capable of: (i) keeping the overall utilization of all the instantiated cloud resources in a target range, (ii) maintaining service response times close to the ones obtained using optimal centralized auto-scaling approaches.Comment: Submitted to Springer Computin

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore