631 research outputs found

    Towards accurate and efficient live cell imaging data analysis

    Get PDF
    Dynamische zellulĂ€re Prozesse wie Zellzyklus, Signaltransduktion oder Transkription zu analysieren wird Live-cell-imaging mittels Zeitraffermikroskopie verwendet. Um nun aber ZellabstammungsbĂ€ume aus einem Zeitraffervideo zu extrahieren, mĂŒssen die Zellen segmentiert und verfolgt werden können. Besonders hier, wo lebende Zellen ĂŒber einen langen Zeitraum betrachtet werden, sind Fehler in der Analyse fatal: Selbst eine extrem niedrige Fehlerrate kann sich amplifizieren, wenn viele Zeitpunkte aufgenommen werden, und damit den gesamten Datensatz unbrauchbar machen. In dieser Arbeit verwenden wir einen einfachen aber praktischen Ansatz, der die VorzĂŒge der manuellen und automatischen AnsĂ€tze kombiniert. Das von uns entwickelte Live-cell-Imaging Datenanalysetool ‘eDetect’ ergĂ€nzt die automatische Zellsegmentierung und -verfolgung durch Nachbearbeitung. Das Besondere an dieser Arbeit ist, dass sie mehrere interaktive Datenvisualisierungsmodule verwendet, um den Benutzer zu fĂŒhren und zu unterstĂŒtzen. Dies erlaubt den gesamten manuellen Eingriffsprozess zu rational und effizient zu gestalten. Insbesondere werden zwei Streudiagramme und eine Heatmap verwendet, um die Merkmale einzelner Zellen interaktiv zu visualisieren. Die Streudiagramme positionieren Ă€hnliche Objekte in unmittelbarer NĂ€he. So kann eine große Gruppe Ă€hnlicher Fehler mit wenigen Mausklicks erkannt und korrigiert werden, und damit die manuellen Eingriffe auf ein Minimum reduziert werden. Die Heatmap ist darauf ausgerichtet, alle ĂŒbersehenen Fehler aufzudecken und den Benutzern dabei zu helfen, bei der Zellabstammungsrekonstruktion schrittweise die perfekte Genauigkeit zu erreichen. Die quantitative Auswertung zeigt, dass eDetect die Genauigkeit der Nachverfolgung innerhalb eines akzeptablen Zeitfensters erheblich verbessern kann. Beurteilt nach biologisch relevanten Metriken, ĂŒbertrifft die Leistung von eDetect die derer Tools, die den Wettbewerb ‘Cell Tracking Challenge’ gewonnen haben.Live cell imaging based on time-lapse microscopy has been used to study dynamic cellular behaviors, such as cell cycle, cell signaling and transcription. Extracting cell lineage trees out of a time-lapse video requires cell segmentation and cell tracking. For long term live cell imaging, data analysis errors are particularly fatal. Even an extremely low error rate could potentially be amplified by the large number of sampled time points and render the entire video useless. In this work, we adopt a straightforward but practical design that combines the merits of manual and automatic approaches. We present a live cell imaging data analysis tool `eDetect', which uses post-editing to complement automatic segmentation and tracking. What makes this work special is that eDetect employs multiple interactive data visualization modules to guide and assist users, making the error detection and correction procedure rational and efficient. Specifically, two scatter plots and a heat map are used to interactively visualize single cells' visual features. The scatter plots position similar results in close vicinity, making it easy to spot and correct a large group of similar errors with a few mouse clicks, minimizing repetitive human interventions. The heat map is aimed at exposing all overlooked errors and helping users progressively approach perfect accuracy in cell lineage reconstruction. Quantitative evaluation proves that eDetect is able to largely improve accuracy within an acceptable time frame, and its performance surpasses the winners of most tasks in the `Cell Tracking Challenge', as measured by biologically relevant metrics

    Efficient Algorithms for Moral Lineage Tracing

    Full text link
    Lineage tracing, the joint segmentation and tracking of living cells as they move and divide in a sequence of light microscopy images, is a challenging task. Jug et al. have proposed a mathematical abstraction of this task, the moral lineage tracing problem (MLTP), whose feasible solutions define both a segmentation of every image and a lineage forest of cells. Their branch-and-cut algorithm, however, is prone to many cuts and slow convergence for large instances. To address this problem, we make three contributions: (i) we devise the first efficient primal feasible local search algorithms for the MLTP, (ii) we improve the branch-and-cut algorithm by separating tighter cutting planes and by incorporating our primal algorithms, (iii) we show in experiments that our algorithms find accurate solutions on the problem instances of Jug et al. and scale to larger instances, leveraging moral lineage tracing to practical significance.Comment: Accepted at ICCV 201

    Generalizations of the Multicut Problem for Computer Vision

    Get PDF
    Graph decomposition has always been a very important concept in machine learning and computer vision. Many tasks like image and mesh segmentation, community detection in social networks, as well as object tracking and human pose estimation can be formulated as a graph decomposition problem. The multicut problem in particular is a popular model to optimize for a decomposition of a given graph. Its main advantage is that no prior knowledge about the number of components or their sizes is required. However, it has several limitations, which we address in this thesis: Firstly, the multicut problem allows to specify only cost or reward for putting two direct neighbours into distinct components. This limits the expressibility of the cost function. We introduce special edges into the graph that allow to define cost or reward for putting any two vertices into distinct components, while preserving the original set of feasible solutions. We show that this considerably improves the quality of image and mesh segmentations. Second, multicut is notorious to be NP-hard for general graphs, that limits its applications to small super-pixel graphs. We define and implement two primal feasible heuristics to solve the problem. They do not provide any guarantees on the runtime or quality of solutions, but in practice show good convergence behaviour. We perform an extensive comparison on multiple graphs of different sizes and properties. Third, we extend the multicut framework by introducing node labels, so that we can jointly optimize for graph decomposition and nodes classification by means of exactly the same optimization algorithm, thus eliminating the need to hand-tune optimizers for a particular task. To prove its universality we applied it to diverse computer vision tasks, including human pose estimation, multiple object tracking, and instance-aware semantic segmentation. We show that we can improve the results over the prior art using exactly the same data as in the original works. Finally, we use employ multicuts in two applications: 1) a client-server tool for interactive video segmentation: After the pre-processing of the video a user draws strokes on several frames and a time-coherent segmentation of the entire video is performed on-the-fly. 2) we formulate a method for simultaneous segmentation and tracking of living cells in microscopy data. This task is challenging as cells split and our algorithm accounts for this, creating parental hierarchies. We also present results on multiple model fitting. We find models in data heavily corrupted by noise by finding components defining these models using higher order multicuts. We introduce an interesting extension that allows our optimization to pick better hyperparameters for each discovered model. In summary, this thesis extends the multicut problem in different directions, proposes algorithms for optimization, and applies it to novel data and settings.Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, KommunitĂ€tserkennung in sozialen Netzwerken, sowie Objektverfolgung und SchĂ€tzung von menschlichen Posen können als Graphzerlegungsproblem formuliert werden. Der Mehrfachschnitt-Ansatz ist ein populĂ€res Mittel um ĂŒber die Zerlegungen eines gegebenen Graphen zu optimieren. Sein grĂ¶ĂŸter Vorteil ist, dass kein Vorwissen ĂŒber die Anzahl an Komponenten und deren GrĂ¶ĂŸen benötigt wird. Dennoch hat er mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln: Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten oder Belohnungen fĂŒr die Trennung von zwei Nachbarn in verschiedene Komponenten. Dies schrĂ€nkt die AusdrucksfĂ€higkeit der Kostenfunktion ein und fĂŒhrt zu suboptimalen Ergebnissen. Wir fĂŒgen dem Graphen spezielle Kanten hinzu, welche es erlauben, Kosten oder Belohnungen fĂŒr die Trennung von beliebigen Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an zulĂ€ssigen Lösungen zu verĂ€ndern. Wir zeigen, dass dies die QualitĂ€t von Bild- und Gittersegmentierungen deutlich verbessert. Zweitens ist das Mehrfachschnittproblem berĂŒchtigt dafĂŒr NP-schwer fĂŒr allgemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte Graphen einschrĂ€nkt. Wir definieren und implementieren zwei primal-zulĂ€ssige Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezĂŒglich der Laufzeit oder der QualitĂ€t der Lösungen, zeigen in der Praxis jedoch gutes Konvergenzverhalten. Wir fĂŒhren einen ausfĂŒhrlichen Vergleich auf vielen Graphen verschiedener GrĂ¶ĂŸen und Eigenschaften durch. Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen, sodass wir gemeinsam ĂŒber Zerlegungen und Knoten-Klassifikationen mit dem gleichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg gerĂ€umt. Um die AllgemeingĂŒltigkeit dieses Ansatzes zu ĂŒberprĂŒfen, haben wir ihn auf verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche PosenschĂ€tzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung, angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den gleichen Daten verbessern können. Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein Nutzer-Server-Werkzeug fĂŒr interaktive Video Segmentierung: Nach der Vorbearbeitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und eine zeit-kohĂ€rente Segmentierung des gesamten Videos wird in Echtzeit berechnet. 2) Wir formulieren eine Methode fĂŒr simultane Segmentierung und Verfolgung von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll, da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-Hierarchien mitberĂŒcksichtigen muss. Wir prĂ€sentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir fĂŒhren eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere Hyperparameter fĂŒr jedes entdeckte Modell auszuwĂ€hlen. Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unterschiedlichen Richtungen, schlĂ€gt Algorithmen zur Inferenz in den resultierenden Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an

    Taking aim at moving targets in computational cell migration

    Get PDF
    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs

    Detecting, segmenting and tracking bio-medical objects

    Get PDF
    Studying the behavior patterns of biomedical objects helps scientists understand the underlying mechanisms. With computer vision techniques, automated monitoring can be implemented for efficient and effective analysis in biomedical studies. Promising applications have been carried out in various research topics, including insect group monitoring, malignant cell detection and segmentation, human organ segmentation and nano-particle tracking. In general, applications of computer vision techniques in monitoring biomedical objects include the following stages: detection, segmentation and tracking. Challenges in each stage will potentially lead to unsatisfactory results of automated monitoring. These challenges include different foreground-background contrast, fast motion blur, clutter, object overlap and etc. In this thesis, we investigate the challenges in each stage, and we propose novel solutions with computer vision methods to overcome these challenges and help automatically monitor biomedical objects with high accuracy in different cases --Abstract, page iii
    • 

    corecore