1,094 research outputs found

    Privacy-preserving efficient searchable encryption

    Get PDF
    Data storage and computation outsourcing to third-party managed data centers, in environments such as Cloud Computing, is increasingly being adopted by individuals, organizations, and governments. However, as cloud-based outsourcing models expand to society-critical data and services, the lack of effective and independent control over security and privacy conditions in such settings presents significant challenges. An interesting solution to these issues is to perform computations on encrypted data, directly in the outsourcing servers. Such an approach benefits from not requiring major data transfers and decryptions, increasing performance and scalability of operations. Searching operations, an important application case when cloud-backed repositories increase in number and size, are good examples where security, efficiency, and precision are relevant requisites. Yet existing proposals for searching encrypted data are still limited from multiple perspectives, including usability, query expressiveness, and client-side performance and scalability. This thesis focuses on the design and evaluation of mechanisms for searching encrypted data with improved efficiency, scalability, and usability. There are two particular concerns addressed in the thesis: on one hand, the thesis aims at supporting multiple media formats, especially text, images, and multimodal data (i.e. data with multiple media formats simultaneously); on the other hand the thesis addresses client-side overhead, and how it can be minimized in order to support client applications executing in both high-performance desktop devices and resource-constrained mobile devices. From the research performed to address these issues, three core contributions were developed and are presented in the thesis: (i) CloudCryptoSearch, a middleware system for storing and searching text documents with privacy guarantees, while supporting multiple modes of deployment (user device, local proxy, or computational cloud) and exploring different tradeoffs between security, usability, and performance; (ii) a novel framework for efficiently searching encrypted images based on IES-CBIR, an Image Encryption Scheme with Content-Based Image Retrieval properties that we also propose and evaluate; (iii) MIE, a Multimodal Indexable Encryption distributed middleware that allows storing, sharing, and searching encrypted multimodal data while minimizing client-side overhead and supporting both desktop and mobile devices

    Practical Isolated Searchable Encryption in a Trusted Computing Environment

    Get PDF
    Cloud computing has become a standard computational paradigm due its numerous advantages, including high availability, elasticity, and ubiquity. Both individual users and companies are adopting more of its services, but not without loss of privacy and control. Outsourcing data and computations to a remote server implies trusting its owners, a problem many end-users are aware. Recent news have proven data stored on Cloud servers is susceptible to leaks from the provider, third-party attackers, or even from government surveillance programs, exposing users’ private data. Different approaches to tackle these problems have surfaced throughout the years. Naïve solutions involve storing data encrypted on the server, decrypting it only on the client-side. Yet, this imposes a high overhead on the client, rendering such schemes impractical. Searchable Symmetric Encryption (SSE) has emerged as a novel research topic in recent years, allowing efficient querying and updating over encrypted datastores in Cloud servers, while retaining privacy guarantees. Still, despite relevant recent advances, existing SSE schemes still make a critical trade-off between efficiency, security, and query expressiveness, thus limiting their adoption as a viable technology, particularly in large-scale scenarios. New technologies providing Isolated Execution Environments (IEEs) may help improve SSE literature. These technologies allow applications to be run remotely with privacy guarantees, in isolation from other, possibly privileged, processes inside the CPU, such as the operating system kernel. Prominent example technologies are Intel SGX and ARM TrustZone, which are being made available in today’s commodity CPUs. In this thesis we study these new trusted hardware technologies in depth, while exploring their application to the problem of searching over encrypted data, primarily focusing in SGX. In more detail, we study the application of IEEs in SSE schemes, improving their efficiency, security, and query expressiveness. We design, implement, and evaluate three new SSE schemes for different query types, namely Boolean queries over text, similarity queries over image datastores, and multimodal queries over text and images. These schemes can support queries combining different media formats simultaneously, envisaging applications such as privacy-enhanced medical diagnosis and management of electronic-healthcare records, or confidential photograph catalogues, running without the danger of privacy breaks in Cloud-based provisioned services

    PPS-ADS: A Framework for Privacy-Preserved and Secured Distributed System Architecture for Handling Big Data

    Get PDF
    The exponential expansion of Big Data in 7V’s (velocity, variety, veracity, value, variability and visualization) brings forth new challenges to security, reliability, availability and privacy of these data sets. Traditional security techniques and algorithms fail to complement this gigantic big data. This paper aims to improve the recently proposed Atrain Distributed System (ADS) by incorporating new features which will cater to the end-to-end availability and security aspects of the big data in the distributed system. The paper also integrates the concept of Software Defined Networking (SDN) in ADS to effectively control and manage the routing of the data item in the ADS. The storage of data items in the ADS is done on the basis of the type of data (structured or unstructured), the capacity of the distributed system (or coach) and the distance of coach from the pilot computer (PC). In order to maintain the consistency of data and to eradicate the possible loss of data, the concept of “forward positive” and “backward positive” acknowledgment is proposed. Furthermore, we have incorporated “Twofish” cryptographic technique to encrypt the big data in the ADS. Issues like “data ownership”, “data security, “data privacy” and data reliability” are pivotal while handling the big data. The current paper presents a framework for a privacy-preserved architecture for handling the big data in an effective manner

    A Practical Framework for Storing and Searching Encrypted Data on Cloud Storage

    Full text link
    Security has become a significant concern with the increased popularity of cloud storage services. It comes with the vulnerability of being accessed by third parties. Security is one of the major hurdles in the cloud server for the user when the user data that reside in local storage is outsourced to the cloud. It has given rise to security concerns involved in data confidentiality even after the deletion of data from cloud storage. Though, it raises a serious problem when the encrypted data needs to be shared with more people than the data owner initially designated. However, searching on encrypted data is a fundamental issue in cloud storage. The method of searching over encrypted data represents a significant challenge in the cloud. Searchable encryption allows a cloud server to conduct a search over encrypted data on behalf of the data users without learning the underlying plaintexts. While many academic SE schemes show provable security, they usually expose some query information, making them less practical, weak in usability, and challenging to deploy. Also, sharing encrypted data with other authorized users must provide each document's secret key. However, this way has many limitations due to the difficulty of key management and distribution. We have designed the system using the existing cryptographic approaches, ensuring the search on encrypted data over the cloud. The primary focus of our proposed model is to ensure user privacy and security through a less computationally intensive, user-friendly system with a trusted third party entity. To demonstrate our proposed model, we have implemented a web application called CryptoSearch as an overlay system on top of a well-known cloud storage domain. It exhibits secure search on encrypted data with no compromise to the user-friendliness and the scheme's functional performance in real-world applications.Comment: 146 Pages, Master's Thesis, 6 Chapters, 96 Figures, 11 Table
    • …
    corecore