310 research outputs found

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Incorporating variable viscosity in vorticity-based formulations for Brinkman equations

    Get PDF
    In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babu\v{s}ka-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates which are further confirmed through computational example

    Finite element methods for flow in porous media

    Get PDF
    This thesis studies the application of finite element methods to porous flow problems. Particular attention is paid to locally mass conserving methods, which are very well suited for typical multiphase flow applications in porous media. The focus is on the Brinkman model, which is a parameter dependent extension of the classical Darcy model for porous flow taking the viscous phenomena into account. The thesis introduces a mass conserving finite element method for the Brinkman flow, with complete mathematical analysis of the method. In addition, stochastic material parameters are considered for the Brinkman flow, and parameter dependent Robin boundary conditions for the underlying Darcy flow. All of the theoretical results in the thesis are also verified with extensive numerical testing. Furthermore, many implementational aspects are discussed in the thesis, and computational viability of the methods introduced, both in terms of usefulness and computational complexity, is taken into account

    A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology

    Full text link
    We present a Virtual Element Method (VEM) for a nonlocal reaction-diffusion system of the cardiac electric field. To this system, we analyze an H1(Ω)H^1(\Omega)-conforming discretization by means of VEM which can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general LpL^p compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2L^2 norm. Finally, we report some numerical tests supporting the theoretical results

    Stabilized mixed approximation of axisymmetric Brinkman flows

    Get PDF
    This paper is devoted to the numerical analysis of an augmented finite element approximation of the axisymmetric Brinkman equations. Stabilization of the variational formulation is achieved by adding suitable Galerkin least-squares terms, allowing us to transform the original problem into a formulation better suited for performing its stability analysis. The sought quantities (here velocity, vorticity, and pressure) are approximated by Raviart−Thomas elements of arbitrary order k ≥ 0, piecewise continuous polynomials of degree k + 1, and piecewise polynomials of degree k, respectively. The well-posedness of the resulting continuous and discrete variational problems is rigorously derived by virtue of the classical Babuška–Brezzi theory. We further establish a priori error estimates in the natural norms, and we provide a few numerical tests illustrating the behavior of the proposed augmented scheme and confirming our theoretical findings regarding optimal convergence of the approximate solutions
    corecore