1,878 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    2023-2024 Graduate School Catalog

    Get PDF
    You and your peers represent more than 67 countries and your shared scholarship spans 140 programs - from business administration and biomedical engineering to history, horticulture, musical performance, marine science, and more. Your ideas and interests will inform public health, create opportunities for art and innovation, contribute to the greater good, and positively impact economic development in Maine and beyond

    Digital Traces of the Mind::Using Smartphones to Capture Signals of Well-Being in Individuals

    Get PDF
    General context and questions Adolescents and young adults typically use their smartphone several hours a day. Although there are concerns about how such behaviour might affect their well-being, the popularity of these powerful devices also opens novel opportunities for monitoring well-being in daily life. If successful, monitoring well-being in daily life provides novel opportunities to develop future interventions that provide personalized support to individuals at the moment they require it (just-in-time adaptive interventions). Taking an interdisciplinary approach with insights from communication, computational, and psychological science, this dissertation investigated the relation between smartphone app use and well-being and developed machine learning models to estimate an individual’s well-being based on how they interact with their smartphone. To elucidate the relation between smartphone trace data and well-being and to contribute to the development of technologies for monitoring well-being in future clinical practice, this dissertation addressed two overarching questions:RQ1: Can we find empirical support for theoretically motivated relations between smartphone trace data and well-being in individuals? RQ2: Can we use smartphone trace data to monitor well-being in individuals?Aims The first aim of this dissertation was to quantify the relation between the collected smartphone trace data and momentary well-being at the sample level, but also for each individual, following recent conceptual insights and empirical findings in psychological, communication, and computational science. A strength of this personalized (or idiographic) approach is that it allows us to capture how individuals might differ in how smartphone app use is related to their well-being. Considering such interindividual differences is important to determine if some individuals might potentially benefit from spending more time on their smartphone apps whereas others do not or even experience adverse effects. The second aim of this dissertation was to develop models for monitoring well-being in daily life. The present work pursued this transdisciplinary aim by taking a machine learning approach and evaluating to what extent we might estimate an individual’s well-being based on their smartphone trace data. If such traces can be used for this purpose by helping to pinpoint when individuals are unwell, they might be a useful data source for developing future interventions that provide personalized support to individuals at the moment they require it (just-in-time adaptive interventions). With this aim, the dissertation follows current developments in psychoinformatics and psychiatry, where much research resources are invested in using smartphone traces and similar data (obtained with smartphone sensors and wearables) to develop technologies for detecting whether an individual is currently unwell or will be in the future. Data collection and analysis This work combined novel data collection techniques (digital phenotyping and experience sampling methodology) for measuring smartphone use and well-being in the daily lives of 247 student participants. For a period up to four months, a dedicated application installed on participants’ smartphones collected smartphone trace data. In the same time period, participants completed a brief smartphone-based well-being survey five times a day (for 30 days in the first month and 30 days in the fourth month; up to 300 assessments in total). At each measurement, this survey comprised questions about the participants’ momentary level of procrastination, stress, and fatigue, while sleep duration was measured in the morning. Taking a time-series and machine learning approach to analysing these data, I provide the following contributions: Chapter 2 investigates the person-specific relation between passively logged usage of different application types and momentary subjective procrastination, Chapter 3 develops machine learning methodology to estimate sleep duration using smartphone trace data, Chapter 4 combines machine learning and explainable artificial intelligence to discover smartphone-tracked digital markers of momentary subjective stress, Chapter 5 uses a personalized machine learning approach to evaluate if smartphone trace data contains behavioral signs of fatigue. Collectively, these empirical studies provide preliminary answers to the overarching questions of this dissertation.Summary of results With respect to the theoretically motivated relations between smartphone trace data and wellbeing (RQ1), we found that different patterns in smartphone trace data, from time spent on social network, messenger, video, and game applications to smartphone-tracked sleep proxies, are related to well-being in individuals. The strength and nature of this relation depends on the individual and app usage pattern under consideration. The relation between smartphone app use patterns and well-being is limited in most individuals, but relatively strong in a minority. Whereas some individuals might benefit from using specific app types, others might experience decreases in well-being when spending more time on these apps. With respect to the question whether we might use smartphone trace data to monitor well-being in individuals (RQ2), we found that smartphone trace data might be useful for this purpose in some individuals and to some extent. They appear most relevant in the context of sleep monitoring (Chapter 3) and have the potential to be included as one of several data sources for monitoring momentary procrastination (Chapter 2), stress (Chapter 4), and fatigue (Chapter 5) in daily life. Outlook Future interdisciplinary research is needed to investigate whether the relationship between smartphone use and well-being depends on the nature of the activities performed on these devices, the content they present, and the context in which they are used. Answering these questions is essential to unravel the complex puzzle of developing technologies for monitoring well-being in daily life.<br/

    Ditransitives in germanic languages. Synchronic and diachronic aspects

    Full text link
    This volume brings together twelve empirical studies on ditransitive constructions in Germanic languages and their varieties, past and present. Specifically, the volume includes contributions on a wide variety of Germanic languages, including English, Dutch, and German, but also Danish, Swedish, and Norwegian, as well as lesser-studied ones such as Faroese. While the first part of the volume focuses on diachronic aspects, the second part showcases a variety of synchronic aspects relating to ditransitive patterns. Methodologically, the volume covers both experimental and corpus-based studies. Questions addressed by the papers in the volume are, among others, issues like the cross-linguistic pervasiveness and cognitive reality of factors involved in the choice between different ditransitive constructions, or differences and similarities in the diachronic development of ditransitives. The volume’s broad scope and comparative perspective offers comprehensive insights into well-known phenomena and furthers our understanding of variation across languages of the same family

    Current Challenges in the Application of Algorithms in Multi-institutional Clinical Settings

    Get PDF
    The Coronavirus disease pandemic has highlighted the importance of artificial intelligence in multi-institutional clinical settings. Particularly in situations where the healthcare system is overloaded, and a lot of data is generated, artificial intelligence has great potential to provide automated solutions and to unlock the untapped potential of acquired data. This includes the areas of care, logistics, and diagnosis. For example, automated decision support applications could tremendously help physicians in their daily clinical routine. Especially in radiology and oncology, the exponential growth of imaging data, triggered by a rising number of patients, leads to a permanent overload of the healthcare system, making the use of artificial intelligence inevitable. However, the efficient and advantageous application of artificial intelligence in multi-institutional clinical settings faces several challenges, such as accountability and regulation hurdles, implementation challenges, and fairness considerations. This work focuses on the implementation challenges, which include the following questions: How to ensure well-curated and standardized data, how do algorithms from other domains perform on multi-institutional medical datasets, and how to train more robust and generalizable models? Also, questions of how to interpret results and whether there exist correlations between the performance of the models and the characteristics of the underlying data are part of the work. Therefore, besides presenting a technical solution for manual data annotation and tagging for medical images, a real-world federated learning implementation for image segmentation is introduced. Experiments on a multi-institutional prostate magnetic resonance imaging dataset showcase that models trained by federated learning can achieve similar performance to training on pooled data. Furthermore, Natural Language Processing algorithms with the tasks of semantic textual similarity, text classification, and text summarization are applied to multi-institutional, structured and free-text, oncology reports. The results show that performance gains are achieved by customizing state-of-the-art algorithms to the peculiarities of the medical datasets, such as the occurrence of medications, numbers, or dates. In addition, performance influences are observed depending on the characteristics of the data, such as lexical complexity. The generated results, human baselines, and retrospective human evaluations demonstrate that artificial intelligence algorithms have great potential for use in clinical settings. However, due to the difficulty of processing domain-specific data, there still exists a performance gap between the algorithms and the medical experts. In the future, it is therefore essential to improve the interoperability and standardization of data, as well as to continue working on algorithms to perform well on medical, possibly, domain-shifted data from multiple clinical centers

    Towards a Digital Capability Maturity Framework for Tertiary Institutions

    Get PDF
    Background: The Digital Capability (DC) of an Institution is the extent to which the institution's culture, policies, and infrastructure enable and support digital practices (Killen et al., 2017), and maturity is the continuous improvement of those capabilities. As technology continues to evolve, it is likely to give rise to constant changes in teaching and learning, potentially disrupting Tertiary Education Institutions (TEIs) and making existing organisational models less effective. An institution’s ability to adapt to continuously changing technology depends on the change in culture and leadership decisions within the individual institutions. Change without structure leads to inefficiencies, evident across the Nigerian TEI landscape. These inefficiencies can be attributed mainly to a lack of clarity and agreement on a development structure. Objectives: This research aims to design a structure with a pathway to maturity, to support the continuous improvement of DC in TEIs in Nigeria and consequently improve the success of digital education programmes. Methods: I started by conducting a Systematic Literature Review (SLR) investigating the body of knowledge on DC, its composition, the relationship between its elements and their respective impact on the Maturity of TEIs. Findings from the review led me to investigate further the key roles instrumental in developing Digital Capability Maturity in Tertiary Institutions (DCMiTI). The results of these investigations formed the initial ideas and constructs upon which the proposed structure was built. I then explored a combination of quantitative and qualitative methods to substantiate the initial constructs and gain a deeper understanding of the relationships between elements/sub-elements. Next, I used triangulation as a vehicle to expand the validity of the findings by replicating the methods in a case study of TEIs in Nigeria. Finally, after using the validated constructs and knowledge base to propose a structure based on CMMI concepts, I conducted an expert panel workshop to test the model’s validity. Results: I consolidated the body of knowledge from the SLR into a universal classification of 10 elements, each comprising sub-elements. I also went on to propose a classification for DCMiTI. The elements/sub-elements in the classification indicate the success factors for digital maturity, which were also found to positively impact the ability to design, deploy and sustain digital education. These findings were confirmed in a UK University and triangulated in a case study of Northwest Nigeria. The case study confirmed the literature findings on the status of DCMiTI in Nigeria and provided sufficient evidence to suggest that a maturity structure would be a well-suited solution to supporting DCM in the region. I thus scoped, designed, and populated a domain-specific framework for DCMiTI, configured to support the educational landscape in Northwest Nigeria. Conclusion: The proposed DCMiTI framework enables TEIs to assess their maturity level across the various capability elements and reports on DCM as a whole. It provides guidance on the criteria that must be satisfied to achieve higher levels of digital maturity. The framework received expert validation, as domain experts agreed that the proposed Framework was well applicable to developing DCMiTI and would be a valuable tool to support TEIs in delivering successful digital education. Recommendations were made to engage in further iterations of testing by deploying the proposed framework for use in TEI to confirm the extent of its generalisability and acceptability

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page
    • …
    corecore