6,345 research outputs found

    Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints

    Full text link
    We investigate two new optimization problems -- minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [14, 35] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to log-factors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.Comment: 23 pages. A short version of this appeared in Advances of NIPS-201

    LP-Based Algorithms for Capacitated Facility Location

    Full text link
    Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem. In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.Comment: 25 pages, 6 figures; minor revision

    Towards Distributed Two-Stage Stochastic Optimization

    Get PDF
    The weighted vertex cover problem is concerned with selecting a subset of the vertices that covers a target set of edges with the objective of minimizing the total cost of the selected vertices. We consider a variant of this classic combinatorial optimization problem where the target edge set is not fully known; rather, it is characterized by a probability distribution. Adhering to the model of two-stage stochastic optimization, the execution is divided into two stages so that in the first stage, the decision maker selects some of the vertices based on the probabilistic forecast of the target edge set. Then, in the second stage, the edges in the target set are revealed and in order to cover them, the decision maker can augment the vertex subset selected in the first stage with additional vertices. However, in the second stage, the vertex cost increases by some inflation factor, so the second stage selection becomes more expensive. The current paper studies the two-stage stochastic vertex cover problem in the realm of distributed graph algorithms, where the decision making process (in both stages) is distributed among the vertices of the graph. By combining the stochastic optimization toolbox with recent advances in distributed algorithms for weighted vertex cover, we develop an algorithm that runs in time O(log (?) / ?), sends O(m) messages in total, and guarantees to approximate the optimal solution within a (3 + ?)-ratio, where m is the number of edges in the graph, ? is its maximum degree, and 0 < ? < 1 is a performance parameter

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201
    • …
    corecore