322 research outputs found

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm

    Approximating the least core value and least core of cooperative games with supermodular costs

    Get PDF
    We study the approximation of the least core value and the least core of supermodular cost cooperative games. We provide a framework for approximation based on oracles that approximately determine maximally violated constraints. This framework yields a 3-approximation algorithm for computing the least core value of supermodular cost cooperative games, and a polynomial-time algorithm for computing a cost allocation in the 2-approximate least core of these games. This approximation framework extends naturally to submodular profit cooperative games. For scheduling games, a special class of supermodular cost cooperative games, we give a fully polynomial-time approximation scheme for computing the least core value. For matroid profit games, a special class of submodular profit cooperative games, we give exact polynomial-time algorithms for computing the least core value as well as a least core cost allocation.National Science Foundation (U.S.) (DMI-0426686

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005.

    Algorithmic and game-theoretic perspectives on scheduling

    Get PDF
    This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008.Includes bibliographical references (p. 103-110).(cont.) Second, for almost all 0-1 bipartite instances, we give a lower bound on the integrality gap of various linear programming relaxations of this problem. Finally, we show that for almost all 0-1 bipartite instances, all feasible schedules are arbitrarily close to optimal. Finally, we consider the problem of minimizing the sum of weighted completion times in a concurrent open shop environment. We present some interesting properties of various linear programming relaxations for this problem, and give a combinatorial primal-dual 2-approximation algorithm.In this thesis, we study three problems related to various algorithmic and game-theoretic aspects of scheduling. First, we apply ideas from cooperative game theory to study situations in which a set of agents faces super modular costs. These situations appear in a variety of scheduling contexts, as well as in some settings related to facility location and network design. Although cooperation is unlikely when costs are super modular, in some situations, the failure to cooperate may give rise to negative externalities. We study the least core value of a cooperative game -- the minimum penalty we need to charge a coalition for acting independently that ensures the existence of an efficient and stable cost allocation -- as a means of encouraging cooperation. We show that computing the least core value of supermodular cost cooperative games is strongly NP-hard, and design an approximation framework for this problem that in the end, yields a (3 + [epsilon])-approximation algorithm. We also apply our approximation framework to obtain better results for two special cases of supermodular cost cooperative games that arise from scheduling and matroid optimization. Second, we focus on the classic precedence- constrained single-machine scheduling problem with the weighted sum of completion times objective. We focus on so-called 0-1 bipartite instances of this problem, a deceptively simple class of instances that has virtually the same approximability behavior as arbitrary instances. In the hope of improving our understanding of these instances, we use models from random graph theory to look at these instances with a probabilistic lens. First, we show that for almost all 0-1 bipartite instances, the decomposition technique of Sidney (1975) does not yield a non-trivial decomposition.by Nelson A. Uhan.Ph.D

    Combinatorial Optimization

    Get PDF
    This report summarizes the meeting on Combinatorial Optimization where new and promising developments in the field were discussed. Th

    "Rotterdam econometrics": publications of the econometric institute 1956-2005

    Get PDF
    This paper contains a list of all publications over the period 1956-2005, as reported in the Rotterdam Econometric Institute Reprint series during 1957-2005
    corecore