3,827 research outputs found

    Network Neutrality and the Evolution of the Internet

    Get PDF
    In order to create incentives for Internet traffic providers not to discriminate with respect to certain applications on the basis of network capacity requirements, the concept of market driven network neutrality is introduced. Its basic characteristics are that all applications are bearing the opportunity costs of the required traffic capacities. An economic framework for market driven network neutrality in broadband Internet is provided, consisting of congestion pricing and quality of service differentiation. However, network neutrality regulation with its reference point of the traditional TCP would result in regulatory micromanagement of traffic network management. --Broadband Internet,network neutrality,quality of service differentiation,congestion pricing,interclass externality pricing,interconnection agreements

    A new approach to service provisioning in ATM networks

    Get PDF
    The authors formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum end-to-end delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its bandwidth and buffers and users purchase freely resources to meet their desired quality. Users make their decisions based on their own traffic parameters and delay requirements and the network sets prices for those resources. The procedure is iterative in that the network periodically adjusts prices based on monitored user demand, and is decentralized in that only local information is needed for individual users to determine resource requests. The authors derive the network's adjustment scheme and the users' decision rule and establish their optimality. Since the approach does not require the network to know user traffic and delay parameters, it does not require traffic policing on the part of the network

    The effects of qos level degradation cost on provider selection and task allocation model in telecommunication networks

    Get PDF
    Firms acquire network capacity from multiple suppliers which offer different Quality of Service (QoS) levels. After acquisition, day-to-day operations such as video conferencing, voice over IP and data applications are allocated between these acquired capacities by considering QoS requirement of each operation. In optimal allocation scheme, it is generally assumed each operation has to be placed into resource that provides equal or higher QoS Level. Conversely, in this study it is showed that former allocation strategy may lead to suboptimal solutions depending upon penalty cost policy to charge degradation in QoS requirements. We model a cost minimization problem which includes three cost components namely capacity acquisition, opportunity and penalty due to loss in QoS

    Network neutrality and the evolution of the internet

    Get PDF
    In order to create incentives for Internet traffic providers not to discriminate with respect to certain applications on the basis of network capacity require-ments, the concept of market driven network neutrality is introduced. Its basic characteristics are that all applications are bearing the opportunity costs of the required traffic capacities. An economic framework for market driven network neutrality in broadband Internet is provided, consisting of congestion pricing and quality of service differentiation. However, network neutrality regulation with its reference point of the traditional TCP would result in regulatory micro-management of traffic network management. --

    Optimization flow control -- I: Basic algorithm and convergence

    Get PDF
    We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property

    On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks

    Full text link
    The emergence of new network applications is driving network operators to not only fulfill dynamic bandwidth requirements, but offer various grades of service. Degraded provisioning provides an effective solution to flexibly allocate resources in various dimensions to reduce blocking for differentiated demands when network congestion occurs. In this work, we investigate the novel problem of online degraded provisioning in service-differentiated multi-layer networks with optical elasticity. Quality of Service (QoS) is assured by service-holding-time prolongation and immediate access as soon as the service arrives without set-up delay. We decompose the problem into degraded routing and degraded resource allocation stages, and design polynomial-time algorithms with the enhanced multi-layer architecture to increase the network flexibility in temporal and spectral dimensions. Illustrative results verify that we can achieve significant reduction of network service failures, especially for requests with higher priorities. The results also indicate that degradation in optical layer can increase the network capacity, while the degradation in electric layer provides flexible time-bandwidth exchange.Comment: accepted by IEEE GLOBECOM 201
    • 

    corecore