136 research outputs found

    Impact of Antennas on the Anchor-less Indoor Localization of a Static IR-UWB Pair

    Get PDF
    International audienceThis paper investigates the impact of realistic antennas on joint anchor-less localization and indoor characterization based on Impulse Radio (IR) Ultra Wideband (UWB) communications. In this frame, the Maximum Averaged Likelihood (MAL) algorithm and its extended version are considered, both relying on a tree approach consisting in two stages. The first part of the process, which is common to both algorithms, exploits the cross-correlation between received and locally predicted paths. The second stage calculates the averaged likelihood of measured path parameters obtained in the previous step, but different measurements are used for MAL and extended MAL (eMAL). In the first algorithm, only the Angle of Incidence (AoI) and the Time of Arrival (ToA) are considered, whereas the eMAL tree algorithm also accounts for two couples of Angles of Departure (AoDs) and Angles of Arrival (AoAs). The estimation errors of both nodes coordinates and room dimension obtained with the two algorithms are compared for three realistic UWB antennas. Finally, the remaining algorithm-independent ambiguities (i.e. resulting from scenario and geometry) are discussed

    Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications

    Get PDF
    PhDThe next generation of wireless communication is evolving towards user-centric networks, where constant and reliable connectivity and services are essential. Bodycentric wireless network (BCWN) is the most exciting and emerging 4G technology for short (1-5 m) and very short (below 1 m) range communication systems. It has got numerous applications including healthcare, entertainment, surveillance, emergency, sports and military. The major difference between the BCWN and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile medium from the radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio propagation channel parameters and hence the system performance. In addition, fading is another concern that affects the reliability and quality of the wireless link, which needs to be taken into account for a low cost and reliable wireless communication system for body-centric networks. The complex nature of the BCWN requires operating wireless devices to provide low power requirements, less complexity, low cost and compactness in size. Apart from these characteristics, scalable data rates and robust performance in most fading conditions and jamming environment, even at low signal to noise ratio (SNR) is needed. Ultra-wideband (UWB) technology is one of the most promising candidate for BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation of ultra wideband body-centric radio propagation channel using single and multiple antenna techniques. Apart from channel characterisation, system level modelling of potential UWB radio transceivers for body-centric wireless network is also proposed. Channel models with respect to large scale and delay analysis are derived from measured parameters. Results and analyses highlight the consequences of static and dynamic environments in addition to the antenna positions on the performance of body-centric wireless communication channels. Extensive measurement i campaigns are performed to analyse the significance of antenna diversity to combat the channel fading in body-centric wireless networks. Various diversity combining techniques are considered in this process. Measurement data are also used to predict the performance of potential UWB systems in the body-centric wireless networks. The study supports the significance of single and multiple antenna channel characterisation and modelling in producing suitable wireless systems for ultra low power body-centric wireless networks.University of Engineering and Technology Lahore Pakista

    Ultra Wideband Wearable Sensors for Motion Tracking Applications

    Get PDF
    The increasing interest and advancements in wearable electronics, biomedical applications and digital signal processing techniques have led to the unceasing progress and research in novel implementations of wireless communications technology. Human motion tracking and localisation are some of the numerous promising applications that have emerged from this interest. Ultra-wideband (UWB) technology is particularly seen as a very attractive solution for microwave-based localisation due to the fine time resolution capabilities of the UWB pulses. However, to prove the viability of utilizing UWB technology for high precision localisation applications, a considerable amount of research work is still needed. The impact of the presence of the human body on localisation accuracy needs to be investigated. In addition, for guaranteeing accurate data retrieval in an impulse-radio based system, the study of pulse distortion becomes indispensable. The objective of the research work presented in this thesis is to study and carry out experimental investigations to formulate new techniques for the development of an Impulse-radio UWB sensor based localisation system for human motion tracking applications. This research work initiates a new approach for human motion tracking by making use of pulsed UWB technology which will allow the development of advanced tracking solutions with the capacity to meet the needs of professional users. Extensive experimental studies involving several ranging and three dimensional localisation investigations have been undertaken, and the potential of achieving high precision localisation using ultra-wideband technology has been demonstrated. Making use of the upper portion of the UWB band, a novel miniature antenna designed for integration in the UWB localisation system is presented and its performance has been examined. The key findings and contributions of this research work include UWB antenna characterisation for pulse based transmission, evaluation of comprehensive antenna fidelity patterns, impact of pulse fidelity on the communication performance of a UWB radio system, along with studies regarding the effect of the human body on received pulse quality and localisation accuracy. In addition, an innovative approach of making use of antenna phase centre information for improving the localisation accuracy has been presented

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Localisation and tracking of people using distributed UWB sensors

    Get PDF
    In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und Verfolgung von Personen in InnenrĂ€umen auf nichtkooperative Weise erforderlich. FĂŒr die Erkennung von Objekten durch WĂ€nde in kurzer bis mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie aufgrund ihrer hohen zeitlichen Auflösung und DurchdringungsfĂ€higkeit Erfolg versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Personen in InnenrĂ€umen mittels UWB-Sensoren lokalisiert werden können. Er umfasst neben der Erfassung von Messdaten, AbstandschĂ€tzungen und dem Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung. Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsubtraktionsmethode verwendet. Danach wird eine konstante Falschalarmrate Methode zur Detektion und AbstandschĂ€tzung von Personen angewendet. FĂŒr Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziationsmethode entwickelt, um die SchĂ€tzungen des Zielabstandes den richtigen Zielen zuzuordnen. In Szenarien mit mehreren Zielen kann es vorkommen, dass ein nĂ€her zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept fĂŒr ein verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld des Systems durch die Verwendung mehrerer Sensoren mit unterschiedlichen Blickfeldern erweitert lĂ€sst. Hierbei wurde ein Prototyp entwickelt, der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs- und Kooperationsaspekte eine entscheidende Rolle. Sensordaten können durch Zeitversatz und systematische Fehler gestört sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Genauigkeit der SchĂ€tzergebnisse. Weitere Erkenntnisse ĂŒber die ZielzustĂ€nde können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlichkeitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt, und die Unterschiede in der Systemleistung werden bezĂŒglich der von den Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinformationen und die Fusion von Abstandsinformationen, untersucht. Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird als dynamische Überdeckungswahrscheinlichkeit beschrieben. Die dynamische Überdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert, wodurch weniger Sensoren verwendet werden können, wĂ€hrend gleichzeitig die Performanz des SchĂ€tzers in diesem Szenario verbessert wird. Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer Echtzeitanwendung bei unbekannten Szenarien berĂŒcksichtigt. Jeder untersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen Umgebung mit UWB Sensoren verifiziert.Indoor localisation and tracking of people in non-cooperative manner is important in many surveillance and rescue applications. Ultra wideband (UWB) radar technology is promising for through-wall detection of objects in short to medium distances due to its high temporal resolution and penetration capability. This thesis tackles the problem of localisation of people in indoor scenarios using UWB sensors. It follows the process from measurement acquisition, multiple target detection and range estimation to multiple target localisation and tracking. Due to the weak reflection of people compared to the rest of the environment, a background subtraction method is initially used for the detection of people. Subsequently, a constant false alarm rate method is applied for detection and range estimation of multiple persons. For multiple target localisation using a single UWB sensor, an association method is developed to assign target range estimates to the correct targets. In the presence of multiple targets it can happen that targets closer to the sensor induce shadowing over the environment hindering the detection of other targets. A concept for a distributed UWB sensor network is presented aiming at extending the field of view of the system by using several sensors with different fields of view. A real-time operational prototype has been developed taking into consideration sensor cooperation and synchronisation aspects, as well as fusion of the information provided by all sensors. Sensor data may be erroneous due to sensor bias and time offset. Incorrect measurements and measurement noise influence the accuracy of the estimation results. Additional insight of the targets states can be gained by exploiting temporal information. A multiple person tracking framework is developed based on the probability hypothesis density filter, and the differences in system performance are highlighted with respect to the information provided by the sensors i.e. location information fusion vs range information fusion. The information that a target should have been detected when it is not due to shadowing induced by other targets is described as dynamic occlusion probability. The dynamic occlusion probability is incorporated into the tracking framework, allowing fewer sensors to be used while improving the tracker performance in the scenario. The method selection and development has taken into consideration real-time application requirements for unknown scenarios at every step. Each investigated aspect of multiple person localization within the scope of this thesis has been verified using simulations and measurements in a realistic environment using M-sequence UWB sensors

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Location and Map Awareness Technologies in Next Wireless Networks

    Get PDF
    In a future perspective, the need of mapping an unknown indoor environment, of localizing and retrieving information from objects with zero costs and efforts could be satisfied by the adoption of next 5G technologies. Thanks to the mix of mmW and massive arrays technologies, it will be possible to achieve a higher indoor localization accuracy without relying on a dedicated infrastructure for localization but exploiting that designed for communication purposes. Besides users localization and navigation objectives, mapping and thus, the capability of reconstructing indoor scenarios, will be an important field of research with the possibility of sharing environmental information via crowd-sourcing mechanisms between users. Finally, in the Internet of Things vision, it is expected that people, objects and devices will be interconnected to each other with the possibility of exchanging the acquired and estimated data including those regarding objects identification, positioning and mapping contents. To this end, the merge of RFID, WSN and UWB technologies has demonstrated to be a promising solution. Stimulated by this framework, this work describes different technological and signal processing approaches to ameliorate the localization capabilities and the user awareness about the environment. From one side, it has been focused on the study of the localization and mapping capabilities of multi-antenna systems based on 5G technologies considering different technological issues, as for example those related to the existing available massive arrays. From the other side, UWB-RFID systems relying on passive communication schemes have been investigated in terms of localization coverage and by developing different techniques to improve the accuracy even in presence of NLOS conditions

    Infrared ranging in multipath environments for indoor localization of mobile targets

    Get PDF
    Esta tesis aborda el problema de la medida de diferencias de distancia mediante señales Ăłpticas afectadas por multicamino, aplicada a la localizaciĂłn de agentes mĂłviles en espacios interiores. Los avances en robĂłtica, entornos inteligentes y vehĂ­culos autĂłnomos han creado un campo de aplicaciĂłn especĂ­fico para la localizaciĂłn en interiores, cuyos requerimientos de precisiĂłn (en el rango de los cm) son muy superiores a los demandados por las aplicaciones de localizaciĂłn orientadas a personas, en cuyo contexto se han desarrollado la mayor parte de las alternativas tecnolĂłgicas. La investigaciĂłn con mĂ©todos de geometrĂ­a proyectiva basados en cĂĄmaras y de multilateraciĂłn basados en medida de distancia con señales de radiofrecuencia de banda ancha, de ultrasonido y Ăłpticas han demostrado un rendimiento potencial adecuado para cubrir estos requerimientos. Sin embargo, todas estas alternativas, aĂșn en fase de investigaciĂłn, presentan dificultades que limitan su aplicaciĂłn prĂĄctica. En el caso de los sistemas Ăłpticos, escasamente estudiados en este contexto, los trabajos previos se han basado en medidas de diferencia de fase de llegada de señales infrarrojas moduladas sinusoidalmente en intensidad. Una infraestructura centralizada computa medidas diferenciales, entre receptores fijos, de la señal emitida desde el mĂłvil a posicionar, y calcula la posiciĂłn del mĂłvil mediante trilateraciĂłn hiperbĂłlica a partir de Ă©stas. Estas investigaciones demostraron que se pueden alcanzar precisiones de pocos centĂ­metros; sin embargo, las interferencias por multicamino debidas a la reflexiĂłn de la señal Ăłptica en superficies del entorno pueden degradar esta precisiĂłn hasta las decenas de centĂ­metros dependiendo de las caracterĂ­sticas del espacio. AsĂ­ pues, el efecto del multicamino es actualmente la principal fuente de error en esta tecnologĂ­a, y por tanto, la principal barrera a superar para su implementaciĂłn en situaciones reales. En esta tesis se propone y analiza un sistema de medida con señales Ăłpticas que permite obtener estimaciones de diferencias de distancia precisas reduciendo el efecto crĂ­tico del multicamino. El sistema propuesto introduce una modulaciĂłn con secuencias de ruido pseudoaleatorio sobre la modulaciĂłn sinusoidal tĂ­picamente usada para medida de fase por onda continua, y aprovecha las propiedades de ensanchamiento en frecuencia de estas secuencias para reducir el efecto del multicamino. El sistema, que realiza una doble estimaciĂłn de tiempo y fase de llegada, estĂĄ compuesto por una etapa de sincronizaciĂłn que posibilita la demodulaciĂłn parcialmente coherente de la señal recibida, seguida de un medidor diferencial de fase sobre las componentes desensanchadas tras la demodulaciĂłn. Las condiciones de multicamino Ăłptico tĂ­picas en espacios interiores, con una componente de camino directo claramente dominante, permiten que el proceso de demodulaciĂłn recupere mĂĄs potencia del camino directo que del resto de contribuciones, reduciendo el efecto del multicamino en la estimaciĂłn final. Los resultados obtenidos demuestran que la aplicaciĂłn del mĂ©todo propuesto permitirĂ­a realizar posicionamiento a partir de señales Ăłpticas con el rendimiento adecuando para aplicaciones de robĂłtica y guiado de vehĂ­culos en espacios interiores; ademĂĄs, el progresivo aumento de la potencia y el ancho de banda de los dispositivos optoelectrĂłnicos disponibles permite esperar un incremento considerable de las prestaciones de la propuesta en los prĂłximos años
    • 

    corecore