168 research outputs found

    A Unified Framework for Solving Multiagent Task Assignment Problems

    Get PDF
    Multiagent task assignment problem descriptors do not fully represent the complex interactions in a multiagent domain, and algorithmic solutions vary widely depending on how the domain is represented. This issue is compounded as related research fields contain descriptors that similarly describe multiagent task assignment problems, including complex domain interactions, but generally do not provide the mechanisms needed to solve the multiagent aspect of task assignment. This research presents a unified approach to representing and solving the multiagent task assignment problem for complex problem domains. Ideas central to multiagent task allocation, project scheduling, constraint satisfaction, and coalition formation are combined to form the basis of the constrained multiagent task scheduling (CMTS) problem. Basic analysis reveals the exponential size of the solution space for a CMTS problem, approximated by O(2n(m+n)) based on the number of agents and tasks involved in a problem. The shape of the solution space is shown to contain numerous discontinuous regions due to the complexities involved in relational constraints defined between agents and tasks. The CMTS descriptor represents a wide range of classical and modern problems, such as job shop scheduling, the traveling salesman problem, vehicle routing, and cooperative multi-object tracking. Problems using the CMTS representation are solvable by a suite of algorithms, with varying degrees of suitability. Solution generating methods range from simple random scheduling to state-of-the-art biologically inspired approaches. Techniques from classical task assignment solvers are extended to handle multiagent task problems where agents can also multitask. Additional ideas are incorporated from constraint satisfaction, project scheduling, evolutionary algorithms, dynamic coalition formation, auctioning, and behavior-based robotics to highlight how different solution generation strategies apply to the complex problem space

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    Ant colony optimization on runtime reconfigurable architectures

    Get PDF
    • …
    corecore