618 research outputs found

    An infeasible Predictor-Corrector Interior Point Method Applied to Image Denoising

    Get PDF
    Projet PROMATHImage recovery problems can be solved using optimization techniques. In this case, they often lead to the resolution of either a large scale quadratic program, or, equivalently, to a nondifferentiable minimization problem. Interior point methods are widely known for their efficiency in linear programming. Lately, they have been extended with success to the resolution of linear complementary problems, (LCP), which include convex quadratic programming. We present an infeasible predictor-corrector interior point method, in the general framework of monotone (LCP). The algorithm has polynomial complexity. We also prove it converges globally, with asymptotic quadratic rate. We apply this method to the denoising of images. In the implementation we take advantage of the underlying structure of the problem, specially its sparsity. We obtain good performances, that we assess by comparing the method with a variable-metric proximal bundle algorithm applied to the resolution of the equivalent nonsmooth problem

    An interior-point and decomposition approach to multiple stage stochastic programming

    Get PDF
    There is no abstract of this report

    Convergence analysis of an Inexact Infeasible Interior Point method for Semidefinite Programming

    Get PDF
    In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima,Megiddo and Mizuno (A primal-dual infeasible-interior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an accuracy that increases as the solution is approached. A convergence analysis is carried out and the global convergence of the method is prove
    • ā€¦
    corecore