86 research outputs found

    From low-rank approximation to an efficient rational Krylov subspace method for the Lyapunov equation

    Full text link
    We propose a new method for the approximate solution of the Lyapunov equation with rank-11 right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the connection between the Lyapunov equation, solution of systems of linear ODEs and alternating least squares method for low-rank approximation. The numerical experiments confirm the effectiveness of our approach.Comment: 17 pages, 1 figure

    On the Convergence of Krylov Methods with Low-Rank Truncations

    No full text

    Deflated GMRES for Systems with Multiple Shifts and Multiple Right-Hand Sides

    Get PDF
    We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods such as GMRES and BiCGStab have been used to solve multiply shifted systems for about the cost of solving just one system. Restarted GMRES can be improved by deflating eigenvalues for matrices that have a few small eigenvalues. We show that a particular deflated method, GMRES-DR, can be applied to multiply shifted systems. In quantum chromodynamics, it is common to have multiple right-hand sides with multiple shifts for each right-hand side. We develop a method that efficiently solves the multiple right-hand sides by using a deflated version of GMRES and yet keeps costs for all of the multiply shifted systems close to those for one shift. An example is given showing this can be extremely effective with a quantum chromodynamics matrix.Comment: 19 pages, 9 figure

    Matrix Equation Techniques for Certain Evolutionary Partial Differential Equations

    No full text
    We show that the discrete operator stemming from time-space discretization of evolutionary partial differential equations can be represented in terms of a single Sylvester matrix equation. A novel solution strategy that combines projection techniques with the full exploitation of the entry-wise structure of the involved coefficient matrices is proposed. The resulting scheme is able to efficiently solve problems with a tremendous number of degrees of freedom while maintaining a low storage demand as illustrated in several numerical examples
    corecore