1,951 research outputs found

    Patterned Plantar Stimulation During Gait

    Get PDF
    It is well established that the soles of the feet are involved and aid in balance control. However, it is not well understood the exact role that the feet play in gait control. During walking, the center of pressure (CoP) takes a predictable and repeated path along the plantar surfaces, going from heel to toe. This CoP has been established to be vital for postural control during standing, the plantar surfaces may perform a similar role during walking by perceiving this CoP path. Most studies use vibro-tactile stimulation on the plantar surfaces during the entire gait cycle, including the swing phase. However, no studies have investigated the effects of different patterns of sequential stimulation on the plantar surfaces during the stance phase of gait. Therefore, the following chapters describe a method of testing this effect, and demonstrating how such patterned plantar stimulation alters gait in healthy young adults. This method of testing was developed such that plantar stimulation would activate specifically during the stance phase of the gait cycle, and activate in a gait-like or an abnormal sequence. We then hypothesized that stimulation in an abnormal sequence would result in gait and balance deficits when compared to stimulation that followed the natural sequence during walking. Additionally, that walking on an inclined surface would increase the effects of the tactile stimulation sequences on such measures when compared with no stimulation. We tested a total of nine healthy adults and found very minimal effects from the stimulation in any pattern. This demonstrates that healthy adults have the ability to adjust and reweigh sensory information from the plantar surfaces such that gait and balance outcomes show minimal or no deficits when foot-sole tactile sensory sequences are manipulated during slow walking. Additionally, that the perception of the CoP movement may be predominately supplied by slow adapting fibers that are not typically sensitive to vibrations. This work gives indication to the flexibility and adaptability of a healthy motor control system and demonstrates a method of testing such a system with an online stimulation control software

    An investigation into perception of change in the foot-floor interface during repeated stretch-shortening cycles

    Get PDF
    Proprioceptive input is critical for normal and safe movement. There exists a gap in the literature regarding the assessment of proprioceptive function during dynamic tasks of the lower limb. To fill this gap, the present thesis has investigated perception of change in the foot-floor interface during repeated stretch-shortening cycles. This doctoral research serves as a foundation for considering proprioception as it pertains to dynamic function at the ankle

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Instrumentation and validation of a robotic cane for transportation and fall prevention in patients with affected mobility

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física, (especialização em Dispositivos, Microssistemas e Nanotecnologias)O ato de andar é conhecido por ser a forma primitiva de locomoção do ser humano, sendo que este traz muitos benefícios que motivam um estilo de vida saudável e ativo. No entanto, há condições de saúde que dificultam a realização da marcha, o que por consequência pode resultar num agravamento da saúde, e adicionalmente, levar a um maior risco de quedas. Nesse sentido, o desenvolvimento de um sistema de deteção e prevenção de quedas, integrado num dispositivo auxiliar de marcha, seria essencial para reduzir estes eventos de quedas e melhorar a qualidade de vida das pessoas. Para ultrapassar estas necessidades e limitações, esta dissertação tem como objetivo validar e instrumentar uma bengala robótica, denominada Anti-fall Robotic Cane (ARCane), concebida para incorporar um sistema de deteção de quedas e um mecanismo de atuação que possibilite a prevenção de quedas, ao mesmo tempo que assiste a marcha. Para esse fim, foi realizada uma revisão do estado da arte em bengalas robóticas para adquirir um conhecimento amplo e aprofundado dos componentes, mecanismos e estratégias utilizadas, bem como os protocolos experimentais, principais resultados, limitações e desafios em dispositivos existentes. Numa primeira fase, foi estipulado o objetivo de: (i) adaptar a missão do produto; (ii) estudar as necessidades do consumidor; e (iii) atualizar as especificações alvo da ARCane, continuação do trabalho de equipa, para obter um produto com design e engenharia compatível com o mercado. Foi depois estabelecida a arquitetura de hardware e discutidos os componentes a ser instrumentados na ARCane. Em seguida foram realizados testes de interoperabilidade a fim de validar o funcionamento singular e coletivo dos componentes. Relativamente ao controlo de movimento, foi desenvolvido um sistema inovador, de baixo custo e intuitivo, capaz de detetar a intenção do movimento e de reconhecer as fases da marcha do utilizador. Esta implementação foi validada com seis voluntários saudáveis que realizaram testes de marcha com a ARCane para testar sua operabilidade num ambiente de contexto real. Obteve-se uma precisão de 97% e de 90% em relação à deteção da intenção de movimento e ao reconhecimento da fase da marcha do utilizador. Por fim, foi projetado um método de deteção de quedas e mecanismo de prevenção de quedas para futura implementação na ARCane. Foi ainda proposta uma melhoria do método de deteção de quedas, de modo a superar as limitações associadas, bem como a proposta de dispositivos de deteção a serem implementados na ARCane para obter um sistema completo de deteção de quedas.The act of walking is known to be the primitive form of the human being, and it brings many benefits that motivate a healthy and active lifestyle. However, there are health conditions that make walking difficult, which, consequently, can result in worse health and, in addition, lead to a greater risk of falls. Thus, the development of a fall detection and prevention system integrated with a walking aid would be essential to reduce these fall events and improve people quality of life. To overcome these needs and limitations, this dissertation aims to validate and instrument a cane-type robot, called Anti-fall Robotic Cane (ARCane), designed to incorporate a fall detection system and an actuation mechanism that allow the prevention of falls, while assisting the gait. Therefore, a State-of-the-Art review concerning robotic canes was carried out to acquire a broad and in-depth knowledge of the used components, mechanisms and strategies, as well as the experimental protocols, main results, limitations and challenges on existing devices. On a first stage, it was set an objective to (i) enhance the product's mission statement; (ii) study the consumer needs; and (iii) update the target specifications of the ARCane, extending teamwork, to obtain a product with a market-compatible design and engineering that meets the needs and desires of the ARCane users. It was then established the hardware architecture of the ARCane and discussed the electronic components that will instrument the control, sensory, actuator and power units, being afterwards subjected to interoperability tests to validate the singular and collective functioning of cane components altogether. Regarding the motion control of robotic canes, an innovative, cost-effective and intuitive motion control system was developed, providing user movement intention recognition, and identification of the user's gait phases. This implementation was validated with six healthy volunteers who carried out gait trials with the ARCane, in order to test its operability in a real context environment. An accuracy of 97% was achieved for user motion intention recognition and 90% for user gait phase recognition, using the proposed motion control system. Finally, it was idealized a fall detection method and fall prevention mechanism for a future implementation in the ARCane, based on methods applied to robotic canes in the literature. It was also proposed an improvement of the fall detection method in order to overcome its associated limitations, as well as detection devices to be implemented into the ARCane to achieve a complete fall detection system

    Do humans drive spinal cord with limb velocity signal?

    Get PDF
    The ability to move in the environment is crucial to the survival of all animals. Neural pathways that control locomotion can be described as a hierarchy, with multiple levels of control, and those ultimately converge on spinal pattern generators. Neural pathways controlling locomotion are hierarchical, highly integrated, and well characterized anatomically, but functional explanations are lacking. Previous computational modeling of the CPG has proposed that they essential signal driving these spinal networks are expressed in the modality of desired velocity. To date, no published research has empirically tested velocity as being the control signal of locomotion. The purpose of this study was to evaluate human ability to discriminate inter-limb velocity on a split-belt treadmill. If the modality of locomotor control signal is indeed velocity then, according to the classical control theory, limb velocity should also be accurately sensed. We tested this hypothesis by probing human ability to detect minute changes in the velocity of each leg. Healthy volunteers with no previous history of neurological conditions or serious musculoskeletal damage to the lower extremities were recruited to walk on a split-belt treadmill with separately controlled belt speeds. Subjects were exposed to randomized asymmetric speeds of left and right legs for approximately 3 steps. A high-pitch cue instructed subjects to report the fastest leg. In addition, we tested velocity discrimination skills in two other conditions when subjects were either supported or loaded by 10% of their body weight. The perception threshold defined as the velocity detected with better than chance probability (above 50%) was 1.02+/-0.43% m/s, with no significant differences between body weight conditions. Variance of step cycle was found to significantly impact probability detection at the differential speed of 0.01 m/s, which is equivalent to the 1% detection level. The accurate velocity discrimination ability supports the idea that the velocity signal is represented within the locomotor control pathways. We propose that errors in this velocity signal are ultimately used to tune heading direction. Solving for the signal controlling locomotion has positive clinical implications, as it could be used in therapies such as locomotor rehabilitation following neurological injury

    Correlates and consequences of varus knee thrust in osteoarthritis

    Full text link
    Varus knee thrust is an abnormal frontal-plane movement (i.e., an out-bowing) of the knee that occurs during the weight-acceptance phase of gait. Varus thrust is of clinical interest, as it is a potentially-modifiable biomechanical risk factor for knee osteoarthritis (OA) progression and has been associated with knee pain. The overall aim of this dissertation is to identify the structural and symptomatic consequences of varus thrust at the knee and along the lower limb, and the possible anatomical and sensorimotor causes of varus thrust in older adults with or at risk for OA. Varus thrust was assessed in Multicenter Osteoarthritis (MOST) Study participants using high-speed videos of self-paced walking. Varus thrust was observed in 31.3% of 3730 knees. We investigated the longitudinal relation of varus thrust to MRI lesions and found that thrust was associated with increased odds of incident and worsening bone marrow lesions and worsening cartilage loss. We then investigated the longitudinal association of varus thrust with WOMAC knee pain and found that thrust was associated with increased odds of incident and worsening total WOMAC knee pain and worsening pain during weight-bearing and non-weight bearing activities. In an ancillary quantitative gait analysis of a single subject with unilateral varus thrust, we found altered joint moments at the hip, knee, and ankle in the thrust limb compared to the non-thrust limb. We bolstered this pilot data with an investigation of low back and lower extremity pain in the presence of thrust in MOST participants: limbs with thrust had increased odds of incident frequent pain proximal (hip or low back) and distal (ankle and foot) to the knee compared to limbs without thrust. Finally, we investigated the cross-sectional relation of anatomical and sensorimotor impairments at the knee and lower extremity to the prevalence of varus thrust. Thrust was most prevalent in limbs with static varus malalignment and supinated feet during gait, while increasing static knee laxity had a protective effect against thrust. These results fill substantial gaps in the narrative regarding the role of varus thrust in OA development
    • …
    corecore