41 research outputs found

    Fourier optics approaches to enhanced depth-of-field applications in millimetre-wave imaging and microscopy

    Get PDF
    In the first part of this thesis millimetre-wave interferometric imagers are considered for short-range applications such as concealed weapons detection. Compared to real aperture systems, synthetic aperture imagers at these wavelengths can provide improvements in terms of size, cost, depth-of-field (DoF) and imaging flexibility via digitalrefocusing. Mechanical scanning between the scene and the array is investigated to reduce the number of antennas and correlators which drive the cost of such imagers. The tradeoffs associated with this hardware reduction are assessed before to jointly optimise the array configuration and scanning motion. To that end, a novel metric is proposed to quantify the uniformity of the Fourier domain coverage of the array and is maximised with a genetic algorithm. The resulting array demonstrates clear improvements in imaging performances compared to a conventional power-law Y-shaped array. The DoF of antenna arrays, analysed via the Strehl ratio, is shown to be limited even for infinitely small antennas, with the exception of circular arrays. In the second part of this thesis increased DoF in optical systems with Wavefront Coding (WC) is studied. Images obtained with WC are shown to exhibit artifacts that limit the benefits of this technique. An image restoration procedure employing a metric of defocus is proposed to remove these artifacts and therefore extend the DoF beyond the limit of conventional WC systems. A transmission optical microscope was designed and implemented to operate with WC. After suppression of partial coherence effects, the proposed image restoration method was successfully applied and extended DoF images are presented

    Restaurierung von kohärenten Bildern

    Get PDF
    In this thesis a series of novel algorithms for high quality restoration of coherent images is introduced. This task cannot be solved with established methods for the restoration of incoherent images. These algorithms focus on the correction of images in coherent imaging systems with a-priori known aberrations. The new wavefront correction algorithms achieve a significantly higher restoration quality than any previously known technique. The algorithms in this thesis are based on latest advances in optimization algorithms, particularly projections onto convex sets, proximal optimization and fractal self-similarity. Convergence and performance of the individual algorithms are analyzed in detail in various scenarios on real and simulated images. The evaluation also deals with the impact of noise on the restoration quality. Practical application of the new algorithms on microscopic images of diverse biological and human samples, as well as shadowgraph images of plankton acquired with a laboratory setup prove their efficiency. The new algorithms also have promising future applications in other areas, for example in adaptive optics and astronomy.In dieser Thesis werden mehrere neue Algorithmen für eine qualitativ hochwertige Restaurierung von kohärenten Bildern vorgestellt. Diese Aufgabe kann mit den bekannten Methoden für die Restaurierung von nicht kohärenten Bildern nicht gelöst werden. Die neuen Algorithmen sind auf die Wiederherstellung von Bildern in kohärenten Abbildungssystemen, bei denen die Aberrationen a-priori bekannt sind, ausgerichtet. Sie dienen der Korrektur der Wellenfront und erreichen eine wesentlich höhere Qualität der Bildrekonstruktion als sämtliche vorbekannte Verfahren. Die Algorithmen in dieser Thesis basieren auf neuesten Optimierungsalgorithmen, wie Projektionen in konvexe Sets, proximale Optimierung und fraktaler Ähnlichkeit. Die Konvergenz und Leistung der einzelnen Algorithmen wird ausführlich in unterschiedlichen Szenarien mit simulierten und realen Bildern untersucht. Eine praktische Erprobung der neuen Algorithmen an mikroskopischen Aufnahmen von unterschiedlichen biologischen und humanen Proben, wie auch an Aufnahmen vom Shadowgraph, bestätigt ihre Effizienz. Die neuen Algorithmen haben vielversprechende künftige Anwendungen, auch in anderen Gebieten, z.B. in der adaptiven Optik und der Astronomie

    QUANTITATIVE METHODS AND DETECTION TECHNIQUES IN HYPERSPECTRAL IMAGING INVOLVING MEDICAL AND OTHER APPLICATIONS

    Get PDF
    This research using Hyperspectral imaging involves recognizing targets through spatial and spectral matching and spectral un-mixing of data ranging from remote sensing to medical imaging kernels for clinical studies based on Hyperspectral data-sets generated using the VFTHSI [Visible Fourier Transform Hyperspectral Imager], whose high resolution Si detector makes the analysis achievable. The research may be broadly classified into (I) A Physically Motivated Correlation Formalism (PMCF), which places both spatial and spectral data on an equivalent mathematical footing in the context of a specific Kernel and (II) An application in RF plasma specie detection during carbon nanotube growing process. (III) Hyperspectral analysis for assessing density and distribution of retinopathies like age related macular degeneration (ARMD) and error estimation enabling the early recognition of ARMD, which is treated as an ill-conditioned inverse imaging problem. The broad statistical scopes of this research are two fold- target recognition problems and spectral unmixing problems. All processes involve experimental and computational analysis of Hyperspectral data sets is presented, which is based on the principle of a Sagnac Interferometer, calibrated to obtain high SNR levels. PMCF computes spectral/spatial/cross moments and answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required precisely for a particular target recognition. Spectral analysis of RF plasma radicals, typically Methane plasma and Argon plasma using VFTHSI has enabled better process monitoring during growth of vertically aligned multi-walled carbon nanotubes by instant registration of the chemical composition or density changes temporally, which is key since a significant correlation can be found between plasma state and structural properties. A vital focus of this thesis is towards medical Hyperspectral imaging applied to retinopathies like age related macular degeneration targets taken with a Fundus imager, which is akin to the VFTHSI. Detection of the constituent components in the diseased hyper-pigmentation area is also computed. The target or reflectance matrix is treated as a highly ill-conditioned spectral un-mixing problem, to which methodologies like inverse techniques, principal component analysis (PCA) and receiver operating curves (ROC) for precise spectral recognition of infected area. The region containing ARMD was easily distinguishable from the spectral mesh plots over the entire band-pass area. Once the location was detected the PMCF coefficients were calculated by cross correlating a target of normal oxygenated retina with the de-oxygenated one. The ROCs generated using PMCF shows 30% higher detection probability with improved accuracy than ROCs based on Spectral Angle Mapper (SAM). By spectral unmixing methods, the important endmembers/carotenoids of the MD pigment were found to be Xanthophyl and lutein, while β-carotene which showed a negative correlation in the unconstrained inverse problem is a supplement given to ARMD patients to prevent the disease and does not occur in the eye. Literature also shows degeneration of meso-zeaxanthin. Ophthalmologists may assert the presence of ARMD and commence the diagnosis process if the Xanthophyl pigment have degenerated 89.9%, while the lutein has decayed almost 80%, as found deduced computationally. This piece of current research takes it to the next level of precise investigation in the continuing process of improved clinical findings by correlating the microanatomy of the diseased fovea and shows promise of an early detection of this disease

    Advances in optical surface figuring by reactive atom plasma (RAP)

    Get PDF
    In this thesis, the research and development of a novel rapid figuring procedure for large ultra-precise optics by Reactive Atom Plasma technology is reported. The hypothesis proved in this research is that a metre scale surface with a form accuracy of ~1 μm PV can be figure corrected to 20 – 30 nm RMS in ten hours. This reduces the processing time by a factor ten with respect to state-of-the-art techniques like Ion Beam Figuring. The need for large scale ultra-precise optics has seen enormous growth in the last decade due to large scale international research programmes. A bottleneck in production is seen in the final figure correction stage. State-of-the-art processes capable of compliance with requisites of form accuracy of one part in 108 (CNC polishing, Magneto-Rheological Finishing and Ion Beam Figuring) have failed to meet the time and cost frame targets of the new optics market. Reactive Atom Plasma (RAP) is a means of plasma chemical etching that makes use of a Radio Frequency Inductively Coupled Plasma (ICP) torch operating at atmospheric pressure. It constitutes an ideal figuring alternative, combining the advantages of a non-contact tool with very high material removal rates and nanometre level repeatability. Despite the rapid figuring potential of this process, research preceding the work presented in this manuscript had made little progress towards design and implementation of a procedure for metre-class optics. The experimental work performed in this PhD project was conducted on Helios 1200, a unique large-scale RAP figuring facility at Cranfield University. Characterisation experiments were carried out on ULE and fused silica surfaces to determine optimum process parameters. Here, the influence of power, surface distance, tool speed and surface temperature was investigated. Subsequently, raster-scanning tests were performed to build an understanding on spaced multiple passes ... [cont.].SAS Prize winne

    DAFI: a single mode optical fibre interferometer for astronomy

    Get PDF
    Not Availabl

    Polarization Modulation Using Wave Plates to Enhance Foveal Fixation Detection in Retinal Birefringence Scanning for Pediatric Vision Screening Purposes

    Get PDF
    To enhance foveal fixation detection while bypassing the deleterious effects of corneal birefringence in binocular retinal birefringence scanning (RBS) for pediatric vision screening purposes, a new RBS design was developed incorporating a double-pass spinning half wave plate (HWP) combined with a fixed double-pass retarder into the optical system. The spinning HWP enables essential differential polarization detection with only one detector, easing constraints on optical alignment and electronic balancing, and together with a fixed wave plate, this differential RBS signal can be detected essentially independent of various corneal retardances and azimuths. Utilizing the measured corneal birefringence from a dataset of 300 human eyes, an algorithm was developed in MATLAB for optimizing the properties of both wave plates to statistically maximize the RBS signal, while having the greatest independence from left and right eye corneal birefringence. Foveal fixation detection was optimized with the HWP spun 9/16 as fast as the circular scan, with the fixed retarder having a retardance of 45 degrees and fast axis at 90 degrees. Combined with bull's-eye focus detection, this computeroptimized RBS design promises to provide an effective screening instrument for automatic identification of infants at risk for amblyopia, the leading cause of vision loss in childhood

    Development of an augmented reality guided computer assisted orthopaedic surgery system

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems
    corecore