650 research outputs found

    A Pragmatic Definition of Elephants in Internet Backbone Traffic

    Get PDF
    Studies of the Internet traffic at the level of network prefixes, fixed length prefixes, TCP flows, AS’s, and WWW traffic, have all shown that a very small percentage of the flows carries the largest part of the information. This behavior is commonly referred to as “the elephants and mice phenomenon”. Traffic engineering applications, such as re-routing or load balancing, could exploit this property by treating elephant flows differently. In this context, though, elephants should not only contribute significantly to the overall load, but also exhibit sufficient persistence in time. The challenge is to be able to examine a flow’s bandwidth and classify it as an elephant based on the data collected across all the flows on a link. In this paper, we present a classification scheme that is based on the definition of a separation threshold, that elephants have to exceed. We introduce two single-feature classification schemes, and show that the resulting elephants are highly volatile. We then propose a two-feature classification scheme that incorporates temporal characteristics and show that this approach is more successful in isolating elephants that exhibit consistency thus making them more attractive for traffic engineering applications

    On the Statistical Characterization of Flows in Internet Traffic with Application to Sampling

    Get PDF
    A new method of estimating some statistical characteristics of TCP flows in the Internet is developed in this paper. For this purpose, a new set of random variables (referred to as observables) is defined. When dealing with sampled traffic, these observables can easily be computed from sampled data. By adopting a convenient mouse/elephant dichotomy also dependent on traffic, it is shown how these variables give a reliable statistical representation of the number of packets transmitted by large flows during successive time intervals with an appropriate duration. A mathematical framework is developed to estimate the accuracy of the method. As an application, it is shown how one can estimate the number of large TCP flows when only sampled traffic is available. The algorithm proposed is tested against experimental data collected from different types of IP networks

    Adaptive algorithms for identifying large flows in IP traffic

    Get PDF
    We propose in this paper an on-line algorithm based on Bloom filters for identifying large flows in IP traffic (a.k.a. elephants). Because of the large number of small flows, hash tables of these algorithms have to be regularly refreshed. Recognizing that the periodic erasure scheme usually used in the technical literature turns out to be quite inefficient when using real traffic traces over a long period of time, we introduce a simple adaptive scheme that closely follows the variations of traffic. When tested against real traffic traces, the proposed on-line algorithm performs well in the sense that the detection ratio of long flows by the algorithm over a long time period is quite high. Beyond the identification of elephants, this same class of algorithms is applied to the closely related problem of detection of anomalies in IP traffic, e.g., SYN flood due for instance to attacks. An algorithm for detecting SYN and volume flood anomalies in Internet traffic is designed. Experiments show that an anomaly is detected in less than one minute and the targeted destinations are identified at the same time

    Optimal transport on supply-demand networks

    Full text link
    Previously, transport networks are usually treated as homogeneous networks, that is, every node has the same function, simultaneously providing and requiring resources. However, some real networks, such as power grid and supply chain networks, show a far different scenario in which the nodes are classified into two categories: the supply nodes provide some kinds of services, while the demand nodes require them. In this paper, we propose a general transport model for those supply-demand networks, associated with a criterion to quantify their transport capacities. In a supply-demand network with heterogenous degree distribution, its transport capacity strongly depends on the locations of supply nodes. We therefore design a simulated annealing algorithm to find the optimal configuration of supply nodes, which remarkably enhances the transport capacity, and outperforms the degree target algorithm, the betweenness target algorithm, and the greedy method. This work provides a start point for systematically analyzing and optimizing transport dynamics on supply-demand networks.Comment: 5 pages, 1 table and 4 figure

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    Revisiting heavy-hitters

    Get PDF

    On the Statistical Characterization of Flows in Internet Traffic with Application to Sampling

    Get PDF
    20 pagesA new method of estimating some statistical characteristics of TCP flows in the Internet is developed in this paper. For this purpose, a new set of random variables (referred to as observables) is defined. When dealing with sampled traffic, these observables can easily be computed from sampled data. By adopting a convenient mouse/elephant dichotomy also dependent on traffic, it is shown how these variables give a reliable statistical representation of the number of packets transmitted by large flows during successive time intervals with an appropriate duration. A mathematical framework is developed to estimate the accuracy of the method. As an application, it is shown how one can estimate the number of large TCP flows when only sampled traffic is available. The algorithm proposed is tested against experimental data collected from different types of IP networks

    Systematic review of African-American women’s identity struggle in American drama

    Get PDF
    This article carries out a review of the literatures of the related materials that approach the main area of my study which is African American women's lack of identity. As a result, black women in America experience various kinds of oppressions throughout their live but this issue has been changed in the second half of 20th century because of many social, political and literary movements. In conclusion, postmodern drama and Civil Right Movement provide the fertile background for many playwrights at that time to promote the development of a political, literary and social agendas

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit

    An Information Plane Architecture Supporting Home Network Management

    Get PDF
    Home networks have evolved to become small-scale versions of enterprise networks. The tools for visualizing and managing such networks are primitive and continue to require networked systems expertise on the part of the home user. As a result, non-expert home users must manually manage non-obvious aspects of the network - e.g., MAC address filtering, network masks, and firewall rules, using these primitive tools. The Homework information plane architecture uses stream database concepts to generate derived events from streams of raw events. This supports a variety of visualization and monitoring techniques, and also enables construction of a closed-loop, policy-based management system. This paper describes the information plane architecture and its associated policy-based management infrastructure. Exemplar visualization and closed-loop management applications enabled by the resulting system (tuned to the skills of non-expert home users) are discussed. © 2011 IEEE.Accepted versio
    • …
    corecore