2,065 research outputs found

    Visualization According to Statisticians: An Interview Study on the Role of Visualization for Inferential Statistics

    Full text link
    Statisticians are not only one of the earliest professional adopters of data visualization, but also some of its most prolific users. Understanding how these professionals utilize visual representations in their analytic process may shed light on best practices for visual sensemaking. We present results from an interview study involving 18 professional statisticians (19.7 years average in the profession) on three aspects: (1) their use of visualization in their daily analytic work; (2) their mental models of inferential statistical processes; and (3) their design recommendations for how to best represent statistical inferences. Interview sessions consisted of discussing inferential statistics, eliciting participant sketches of suitable visual designs, and finally, a design intervention with our proposed visual designs. We analyzed interview transcripts using thematic analysis and open coding, deriving thematic codes on statistical mindset, analytic process, and analytic toolkit. The key findings for each aspect are as follows: (1) statisticians make extensive use of visualization during all phases of their work (and not just when reporting results); (2) their mental models of inferential methods tend to be mostly visually based; and (3) many statisticians abhor dichotomous thinking. The latter suggests that a multi-faceted visual display of inferential statistics that includes a visual indicator of analytically important effect sizes may help to balance the attributed epistemic power of traditional statistical testing with an awareness of the uncertainty of sensemaking.Comment: 16 pages, 8 tables, 3 figure

    To P or not to P: on the evidential nature of P-values and their place in scientific inference

    Full text link
    The customary use of P-values in scientific research has been attacked as being ill-conceived, and the utility of P-values has been derided. This paper reviews common misconceptions about P-values and their alleged deficits as indices of experimental evidence and, using an empirical exploration of the properties of P-values, documents the intimate relationship between P-values and likelihood functions. It is shown that P-values quantify experimental evidence not by their numerical value, but through the likelihood functions that they index. Many arguments against the utility of P-values are refuted and the conclusion is drawn that P-values are useful indices of experimental evidence. The widespread use of P-values in scientific research is well justified by the actual properties of P-values, but those properties need to be more widely understood.Comment: 31 pages, 9 figures and R cod

    A National Bar Survey

    Get PDF

    Improving Information on Legal Malpractice

    Get PDF

    The Bar’s Troubles, and Poultices—and Cures?

    Get PDF

    Information Outlook, October 2003

    Get PDF
    Volume 7, Issue 10https://scholarworks.sjsu.edu/sla_io_2003/1009/thumbnail.jp

    Legal Education for Certified Specialization

    Get PDF
    The purpose of this paper is to offer a partial solution to the public\u27s loss of confidence in lawyers, suggesting that by means of post-graduate education conducted under the auspices of the various law schools, professional specialization in the law will be encouraged through certification, with the end result that lawyers and the public will both benefit psychologically and economically

    The Role of the Subjectivist Position in the Probabilization of Forensic Science

    Get PDF
    This paper is concerned with the contribution of forensic science to the legal process by helping reduce uncertainty. Although it is now widely accepted that uncertainty should be handled by probability because it is a safeguard against incoherent proceedings, there remain diverging and conflicting views on how probability ought to be interpreted. This is exemplified by the proposals in scientific literature that call for procedures of probability computation that are referred to as "objective," suggesting that scientists ought to use them in their reporting to recipients of expert information. I find such proposals objectionable. They need to be viewed cautiously, essentially because ensuing probabilistic statements can be perceived as making forensic science prescriptive. A motivating example from the context of forensic DNA analysis will be chosen to illustrate this. As a main point, it shall be argued that such constraining suggestions can be avoided by interpreting probability as a measure of personal belief, that is, subjective probability. Invoking references to foundational literature from mathematical statistics and philosophy of science, the discussion will explore the consequences of this interdisciplinary viewpoint for the practice of forensic expert reporting. It will be emphasized that-as an operational interpretation of probability-the subjectivist perspective enables forensic science to add value to the legal process, in particular by avoiding inferential impasses to which other interpretations of probability may lead. Moreover, understanding probability from a subjective perspective can encourage participants in the legal process to take on more responsibility in matters regarding the coherent handling of uncertainty. This would assure more balanced interactions at the interface between science and the law. This, in turn, provides support for ongoing developments that can be called the "probabilization" of forensic science
    corecore