19,878 research outputs found

    Conservative implicit schemes for the full potential equation applied to transonic flows

    Get PDF
    Implicit approximate factorization techniques (AF) were investigated for the solution of matrix equations resulting from finite difference approximations to the full potential equation in conservation form. For transonic flows, an artificial viscosity, required to maintain stability in supersonic regions, was introduced by an upwind bias of the density. Two implicit AF procedures are presented and their convergence performance is compared with that of the standard transonic solution procedure, successive line overrelaxation (SLOR). Subcritical and supercritical test cases are considered. The results indicate that the AF schemes are substantially faster than SLOR

    Simple models for dynamic hysteresis loops calculation: Application to hyperthermia optimization

    Full text link
    To optimize the heating properties of magnetic nanoparticles (MNPs) in magnetic hyperthermia applications, it is necessary to calculate the area of their hysteresis loops in an alternating magnetic field. The three types of theories suitable for describing the hysteresis loops of MNPs are presented and compared to numerical simulations: equilibrium functions, Stoner-Wohlfarth model based theories (SWMBTs) and linear response theory (LRT). Suitable formulas to calculate the hysteresis area of major cycles are deduced from SWMBTs and from numerical simulations; the domain of validity of the analytical formula is explicitly studied. In the case of minor cycles, the hysteresis area calculations are based on the LRT. A perfect agreement between LRT and numerical simulations of hysteresis loops is obtained. The domain of validity of the LRT is explicitly studied. Formulas to calculate the hysteresis area at low field valid for any anisotropy of the MNP are proposed. Numerical simulations of the magnetic field dependence of the area show it follows power-laws with a large range of exponents. Then, analytical expressions derived from LRT and SWMBTs are used for a theoretical study of magnetic hyperthermia. It is shown that LRT is only pertinent for MNPs with strong anisotropy and that SWMBTs should be used for weak anisotropy MNPs. The optimum volume of MNPs for magnetic hyperthermia as function of material and experimental parameters is derived. The maximum specific absorption rate (SAR) achievable is calculated versus the MNP anisotropy. It is shown that an optimum anisotropy increases the SAR and reduces the detrimental effects of size distribution. The optimum anisotropy is simple to calculate and depends on the magnetic field used in the hyperthermia experiments and on the MNP magnetization only. The theoretical optimum parameters are compared to the one of several magnetic materials.Comment: 35 pages, 1 table, 11 figure

    Through-flow solution for axial-flow turbomachine blade rows

    Get PDF
    Through flow solution for axial flow turbomachine blade row

    ASRSM: A Sequential Experimental Design for Response Surface Optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96749/1/qre1306.pd

    Interior Point Decoding for Linear Vector Channels

    Full text link
    In this paper, a novel decoding algorithm for low-density parity-check (LDPC) codes based on convex optimization is presented. The decoding algorithm, called interior point decoding, is designed for linear vector channels. The linear vector channels include many practically important channels such as inter symbol interference channels and partial response channels. It is shown that the maximum likelihood decoding (MLD) rule for a linear vector channel can be relaxed to a convex optimization problem, which is called a relaxed MLD problem. The proposed decoding algorithm is based on a numerical optimization technique so called interior point method with barrier function. Approximate variations of the gradient descent and the Newton methods are used to solve the convex optimization problem. In a decoding process of the proposed algorithm, a search point always lies in the fundamental polytope defined based on a low-density parity-check matrix. Compared with a convectional joint message passing decoder, the proposed decoding algorithm achieves better BER performance with less complexity in the case of partial response channels in many cases.Comment: 18 pages, 17 figures, The paper has been submitted to IEEE Transaction on Information Theor

    Publications of the Jet Propulsion Laboratory, July 1961 through June 1962

    Get PDF
    Jpl bibliography on space science, 1961-196

    Practical application of digital computer to distribution systems

    Get PDF
    Given a three phase ac power distribution system, a digital computer program is presented which determines a complete steady state solution for a given condition. The network data is processed by the computer into an admittance matrix, and these parameters are stored in a manner that enables the computer program to operate upon them as the coefficient of a simultaneous set of nonlinear equations. This set of equations are solved by the Gauss-Seidel Iterative Process improved by a modification of the relaxation method. Practical experience with the distribution system of the Davenport, Iowa, plant of the Aluminum Company of America (Alcoa), is also described. Results are briefly discussed with relevance to the importance of the inclusion of an improved data for future work --Abstract, page ii
    • …
    corecore