46,203 research outputs found

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Learning Representations from Persian Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach

    Full text link
    Offline Signature Verification (OSV) is a challenging pattern recognition task, especially when it is expected to generalize well on the skilled forgeries that are not available during the training. Its challenges also include small training sample and large intra-class variations. Considering the limitations, we suggest a novel transfer learning approach from Persian handwriting domain to multi-language OSV domain. We train two Residual CNNs on the source domain separately based on two different tasks of word classification and writer identification. Since identifying a person signature resembles identifying ones handwriting, it seems perfectly convenient to use handwriting for the feature learning phase. The learned representation on the more varied and plentiful handwriting dataset can compensate for the lack of training data in the original task, i.e. OSV, without sacrificing the generalizability. Our proposed OSV system includes two steps: learning representation and verification of the input signature. For the first step, the signature images are fed into the trained Residual CNNs. The output representations are then used to train SVMs for the verification. We test our OSV system on three different signature datasets, including MCYT (a Spanish signature dataset), UTSig (a Persian one) and GPDS-Synthetic (an artificial dataset). On UT-SIG, we achieved 9.80% Equal Error Rate (EER) which showed substantial improvement over the best EER in the literature, 17.45%. Our proposed method surpassed state-of-the-arts by 6% on GPDS-Synthetic, achieving 6.81%. On MCYT, EER of 3.98% was obtained which is comparable to the best previously reported results

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    • …
    corecore