2,073 research outputs found

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Development of Approaches to Common Cause Dependencies with Applications to Multi-Unit Nuclear Power Plant

    Get PDF
    The term “common cause dependencies” encompasses the possible mechanisms that directly compromise components performances and ultimately cause degradation or failure of multiple components, referred to as common cause failure (CCF) events. The CCF events have been a major contributor to the risk posed by the nuclear power plants and considerable research efforts have been devoted to model the impacts of CCF based on historical observations and engineering judgment, referred to as CCF models. However, most current probabilistic risk assessment (PRA) studies are restricted to single reactor units and could not appropriately consider the common cause dependencies across reactor units. Recently, the common cause dependencies across reactor units have attracted a lot of attention, especially following the 2011 Fukushima accident in Japan that involved multiple reactor unit damages and radioactive source term releases. To gain an accurate view of a site's risk profile, a site-based risk metric representing the entire site rather than single reactor unit should be considered and evaluated through a multi-unit PRA (MUPRA). However, the multi-unit risk is neither formally nor adequately addressed in either the regulatory or the commercial nuclear environments and there are still gaps in the PRA methods to model such multi-unit events. In particular, external events, especially seismic events, are expected to be very important in the assessment of risks related to multi-unit nuclear plant sites. The objective of this dissertation is to develop three inter-related approaches to address important issues in both external events and internal events in the MUPRA. 1) Develop a general MUPRA framework to identify and characterize the multi-unit events, and ultimately to assess the risk profile of multi-unit sites. 2) Develop an improved approach to seismic MUPRA through identifying and addressing the issues in the current methods for seismic dependency modeling. The proposed approach can also be extended to address other external events involved in the MUPRA. 3) Develop a novel CCF model for components undergoing age-related degradation by superimposing the maintenance impacts on the component degradation evolutions inferred from condition monitoring data. This approach advances the state-of-the-art CCF analysis in general and assists in the studies of internal events of the MUPRA

    Critical Infrastructures: Enhancing Preparedness & Resilience for the Security of Citizens and Services Supply Continuity: Proceedings of the 52nd ESReDA Seminar Hosted by the Lithuanian Energy Institute & Vytautas Magnus University

    Get PDF
    Critical Infrastructures Preparedness and Resilience is a major societal security issue in modern society. Critical Infrastructures (CIs) provide vital services to modern societies. Some CIs’ disruptions may endanger the security of the citizen, the safety of the strategic assets and even the governance continuity. The European Safety, Reliability and Data Association (ESReDA) as one of the most active EU networks in the field has initiated a project group on the “Critical Infrastructure/Modelling, Simulation and Analysis – Data”. The main focus of the project group is to report on the state of progress in MS&A of the CIs preparedness & resilience with a specific focus on the corresponding data availability and relevance. In order to report on the most recent developments in the field of the CIs preparedness & resilience MS&A and the availability of the relevant data, ESReDA held its 52nd Seminar on the following thematic: “Critical Infrastructures: Enhancing Preparedness & Resilience for the security of citizens and services supply continuity”. The 52nd ESReDA Seminar was a very successful event, which attracted about 50 participants from industry, authorities, operators, research centres, academia and consultancy companies.JRC.G.10-Knowledge for Nuclear Security and Safet

    Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

    Get PDF
    Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process. Keywords: Research reactor, Reactor protection system, Probabilistic safety assessment, Risk-informed design, Unavailability analysis, Sensitivity analysi

    Review of SMR siting and emergency preparedness

    Get PDF

    Review of SMR siting and emergency preparedness

    Get PDF

    Historical review of fire safety at NPP and application of fire PSA to Westinghouse PWR NPP in the frame of risk-informed decision making by

    Get PDF
    The importance of fire as a potential initiator of multiple-system failures took on a new perspective after the cable-tray fire at Browns Ferry in 1975 The review have shown that the first generation Nuclear Power Plant (NPP) fire safety was not factored as high risk area that needed to be effectively assessed and quantified. This resulted in development of peculiar fire safety regulations, standards and expensive backfits. Lack of appropriate regulations and effective methods of fire risk assessment, prescriptive, difficult and expensive retrofit regulations were instituted in USA. The alternative risk-informed performance based regulation was established in USA to resolve the challenges of the prescriptive rules. The review have revealed that both the prescriptive and risk-informed performance based approaches will not represent adequate design basis for new Nuclear Power Plants. The Japanese were pulled in the path of renew fire safety regulations and risk quantification after the Fukushima accident. It has been recognized that effective fire safety assessment, and culture, in concert with countermeasures to prevent, detect, suppress, and mitigate the effect of fires if they occur, will minimized NPP fire risk. Among the numerous recommendation the fire safety at NPP must be planned and engineered before construction begin using the state-of-the-arts technology. Also, the methods of fire risk assessment must integrate the state-of-the-arts deterministic and probabilistic approaches. Two methods are presented which serve to incorporate the fire-related risk into the current practices in nuclear power plants with respect to the assessment of configurations. The first method is a fire protection systems and key safety functions Unavailability Matrix (UM) which is developed to identify structures, systems, and components significant for fire-related risk. The second method is a fire zones and key safety functions (KSFs) fire risk matrix which is useful to identify fire zones which are candidates for risk management actions. The UM is an innovative tool to communicate fire risk. The Monte Carlo method has been used to assess the uncertainty of the UM. The analysis shows that the uncertainty is sufficiently bounded. The significant fire-related risk is localized in six KSF representative components and one fire protection system which should be included in the maintenance rule. The unavailability of fire protection systems does not significantly affect the risk. The fire risk matrix identifies the fire zones that contribute the most to the fire-related risk. These zones belong to the control building and electric penetrations building. The aggregation of Internal Events PSA model and Fire PSA model have shown that the Fire PSA contributes 38.4% to the Risk increase. The feasibility of developing Fire-related Risk Monitor from the FIRE PSA for the Spanish NPP was carried out. One of the main challenges is that RiskSpectrum® fire PSA has 384 fire cases and 384 CDF but in Risk Monitor one CDF is required. However, CAFTA is unable to convert a Sequential Fault Tree structure of the internal Event tree in the Fire PSA. The conversion fails to implement neither all of the sequences leading to core damage nor the Fault Tree selection of the frequency of fire. The proposal is to suppress exchange events and introduce the alignment of the consequences so that a unique result of core damage can be quantified. The detection and fire suppression Event Trees in the reference model were replaced by detection and fire extinction Fault trees. The frequency of each Fire Case of the conversion model and the reference model are quantified and the frequencies compared. The results shows that 90% of the cases are valid, however, the rest have challenges with MCS. A unique CDF of 7.65x10-7 is quantified compared with 9.83×10-6 of the reference. The conversion of the new model in CAFTA was not successful due to software incompatibility.La importància del incendi com un potencial iniciador de sistema múltiples fallides van agafar una nova perspectiva després del incendi al cable-safata de Browns Ferry el 1975. La revisió ha mostrat que la primera generació de seguretat contra incendis de centrals d'Energia Nuclear (NPP) no va ser àrea de alt risc, àrea que necessitava ser efectivament avaluada i quantificada. Això va resultar en el desenvolupament de normes de seguretat de incendi peculiar, estàndards i cares revisions. La manca d'una reglamentació adequada i mètodes eficaços d'avaluació de risc d'incendi, va fer que als USA foren instituïts mètodes d'adaptació de normativa preceptius, difícils i costós. L'alternativa de regulació informada per el risc es va establir als USA per resoldre els reptes de la regulació preceptiva. La revisió ha mostrat que tant als enfocaments de normativa preceptiva i regulació informada per el risc no representen bases de disseny adequades per a noves NPP. Ha estat reconeguda que la efectiva avaluació de seguretat al incendi i la cultura en concert amb mesures per prevenir, detectar, suprimir i mitigar l'efecte d'incendis, si es produeixen, minimitzarà el risc d'incendi en una NPP. Entre les nombroses recomanacions la seguretat contra incendis a una NPP s'hauran previst i dissenyat abans de començar la construcció i utilitzant estat del art de la tecnologia. També, els mètodes d'avaluació del risc d'incendi tindran que integrar el estat del art en els enfocaments de determinista i probabilístics. Dos mètodes són presentats que serveixen per incorporar el risc relacionats amb el foc a les pràctiques actuals en centrals nuclears en respecte a l'avaluació de configuracions. El primer mètode és un sistema de protecció contra incendis i una matriu de indisponiblitats de les funcions clau de seguretat (MU) que es desenvolupa per a identificar estructures, sistemes i components significatius per riscos relacionats amb els incendis. El segon mètode és zones de focs i matriu de risc d'incendi i funcions (KSFs) clau de seguretat que és útil identificar les zones de foc que són candidats per a les accions de gestió de risc. La MU és una eina innovadora per comunicar el risc d'incendi. El risc significatiu relacionats amb el incendi està localitzat en sis components representatius KSF i un sistema de protecció de foc que cal que figuri en la regla de manteniment. La manca de sistemes de protecció contra incendis no afecta significativament al risc. La matriu de risc d'incendi identifica les zones de foc que mes contribueixen al risc relacionats amb el incendi. Aquestes zones pertanyen a l'edifici de control i edifici de penetracions elèctriques. L'agregació del model de PSA de esdeveniments interns i model de incendis PSA han demostrat que el PSA de incendis aporta 38.4% a l'augment de risc. S'ha desenvolupat la viabilitat del Monitor de risc de incendis a partir del PSA de incendis per a una central nuclear espanyola. Un dels reptes principals és que RiskSpectrum® incendis PSA te 384 casos de incendis i te 384 CDF però en risc Monitor és necessària una CDF. Tanmateix, el CAFTA és incapaç de convertir una estructura seqüencial de arbre de fallida de l'arbre esdeveniment interna en el PSA de incendis. La conversió fracassa al posar en pràctica totes les seqüències de danys al nucli i la selecció de l'arbre de fallida de la freqüència de incendi. La descoberta i supressió de arbres de l'esdeveniment de incendi en el model de referència es van substituir per detecció i els arbres de fallades d'extinció d'incendi. La freqüència de cada cas de incendi del model de conversió i el model de referència son quantificades i les freqüències son comparades. Els resultats demostra que el 90% dels casos són vàlid, no obstant això, la resta té reptes amb MCS. Un únic CDF de 7.65x10-7 s'ha quantificat en comparació amb 9.83 × 10-6 de la referència. La conversió del nou model a CAFTA no va tenir èxit a causa de la incompatibilitat del programari

    A PROBABILISTIC MECHANISTIC APPROACH FOR ASSESSING THE RUPTURE FREQUENCY OF SMALL MODULAR REACTOR STEAM GENERATOR TUBES USING UNCERTAIN INPUTS FROM IN-SERVICE INSPECTIONS

    Get PDF
    One of the significant safety issues in nuclear power plants is the rupture of steam generator tubes leading to the loss of radioactive primary coolant inventory and establishment of a path that would bypass the plant's containment structure. Frequency of steam generator tube ruptures is required in probabilistic safety assessments of pressurized water reactors to determine the risks of radionuclide release. The estimation of this frequency has traditionally been based on non-homogeneous historical data that are not applicable to small modular reactors consisting of new steam generator designs. In this research a probabilistic mechanistic-based approach has been developed for assessing the frequency of steam generator tube ruptures. Physics-of-failure concept has been used to formulate mechanistic degradation models considering the underlying degradation conditions prevailing in steam generators. Uncertainties associated with unknown or partially known factors such as material properties, manufacturing methods, and model uncertainties have been characterized, and considered in the assessment of rupture frequency. An application of the tube rupture frequency assessment approach has been demonstrated for tubes of a typical helically-coiled steam generator proposed in most of the new small modular reactors. The tube rupture frequency estimated through the proposed approach is plant-specific and more representative for use in risk-informed safety assessment of small modular reactors. Information regarding the health condition of steam generator tubes from in-service inspections may be used to update the pre-service estimates of tube rupture frequency. In-service inspection data are uncertain in nature due to detection uncertainties and measurement errors associated with nondestructive evaluation methods, which if not properly accounted for, can result in over- or under-estimation of tube rupture frequency. A Bayesian probabilistic approach has been developed in this research that combines prior knowledge on defects with uncertain in-service inspection data, considering all the associated uncertainties to give a probabilistic description of the real defect size and density in the tubes. An application of the proposed Bayesian approach has been provided. Defect size and density estimated through the proposed Bayesian approach can be used to update the pre-service estimates of tube rupture frequency, in order to support risk-informed maintenance and regulatory decision-making

    Nuclear Power

    Get PDF
    The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems

    Managing multi-module issues in SMR PRA

    Get PDF
    corecore